

SECRETARÍA DE ESTADO DE MEDIO AMBIENTE

DIRECCIÓN GENERAL DEL AGUA

CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

Oficina de Planificación Hidrológica Q5017001 H

CLAVE:

067/20-S: 2020-PH-06-i

CLASE:	REF. CRONOLÓGICA:							
CONTRATO DE SERVICIO	08/22							
TÍTULO:								
NIVELACIÓN DE ALTA PF	NIVELACIÓN DE ALTA PRECISIÓN EN EL DELTA DEL EBRO							
PRESUPUESTO TOTAL:								
3	85.040,48 €							
DIRECTOR:	,							
	O GALVÁN PLAZA							
CONSULTOR:								
INGENIO I	DESDE EL AIRE S.L.							
TOMO:	EJEMPLAR:							
TOMO ÚNICO	1 de 2							
CONTENIDO:								
INF	INFORME FINAL							

NIVELACIÓN DE ALTA PRECISIÓN EN EL DELTA DEL EBRO

(TARRAGONA)

Contenido

1.	DBJETO	1
2	ANTECEDENTES	1
	AMBITO DE ESTUDIO	
4.	DESCRIPCIÓN DEL TRABAJO	6
4.1	. EQUIPOS UTILIZADOS	6
4.2	. METODOLOGÍA APLICADA	. 11
	4.2.1. SEÑALIZACIÓN	
	4.2.2. OBSERVACIÓN	
5.	RESULTADOS DE CAMPO	. 13
5.1	. LÍNEA 843	. 13
5.2	LÍNEA 844	. 15
5.3	LÍNEA 845	. 16
5.4	RAMAL 1843	. 18
5.5	. RAMAL 1844	. 19
5.6	. RAMAL 1845	. 20
5.7	. RAMAL 2843	. 22
5.8	. RAMAL 2844	. 23
5.9	. RAMAL 3843	. 24
5.1	0. RAMAL 4843	. 25
5.1	1. RAMAL 5843	. 26
5.1	2. RAMAL 6843	. 27

5.13	COMPROBACIONES	. 28
6. A.	JUSTE DE LA RED Y RESULTADOS DEFINITIVOS	. 29
7. AI	NÁLISIS COMPARATIVO. ESTIMACIÓN DE SUBSIDENCIA	. 37
7.1.	ANTECEDENTES	. 37
	1.1. NIVELACIÓN DE PRECISIÓN EN EL CANAL DE LA MARGEN IZQUIERDA DEL I	
	BRO (TORTOSA-DELTEBRE). CHE 2012	
7.	1.2. NIVELACIÓN DE PRECISIÓN EN EL DELTA DEL EBRO. ACUAMED 2012	. 39
7.2.	VALORACIÓN NIVELACIONES 2012	. 41
7.3.	ANALISIS DE MOVIMIENTOS	. 45
7.	3.1. LÍNEA CHE-2012	. 46
7.	3.2. LÍNEAS ACUAMED 2012	. 50
8. C	ONCLUSIONES	. 61
9. AI	NEXOS DIGITALES	. 63
9.1.	"NORMAS PARA LA NIVELACIÓN GEOMÉTRICA DE ALTA PRECISIÓN CON EQUIF	os
DIGI	ITALES" QUE ESTABLECE EL ÁREA DE GEODESIA DEL INSTITUTO GEOGRÁFI	CO
NAC	CIONAL PARA LA RED ESPAÑOLA DE NIVELACIÓN DE ALTA PRECISIÓN (REDNAP)	. 63
9.2.	RESEÑAS DE LAS SEÑALES DE NIVELACIÓN (IGN-REDNAP)	. 64
9.3.	CERTIFICADOS DE CALIBRACIÓN	. 65
9.4.	FICHAS DE ANÁLSIS COMPARATIVO	66
9.5.	FICHEROS GIS Y KMZ DE LAS LÍNEAS Y RAMALES	. 67
9.6.	FOTOGRAFÍAS DE LA SEÑALES	. 68

1. OBJETO

La presente memoria tiene por objeto describir la metodología utilizada durante la ejecución de los trabajos de nivelación de alta precisión en el delta del Ebro, así como presentar los resultados obtenidos.

2. ANTECEDENTES

Dentro de los trabajos del Plan Integral para la Protección del Delta del Ebro y concretamente de la implantación de la Red de Indicadores Ambientales del Delta del Ebro (RIADE), en 2012 ACUAMED realizó una "Nivelación de precisión en el delta del Ebro" a lo largo de varios itinerarios por el interior del delta y dando cota a la instrumentación de la RIADE. Por otro lado, en ese mismo año 2012, la Sección de Topografía y Cartografía de la CHE, llevó a cabo una "Nivelación de precisión en el canal de la margen izquierda del río Ebro (Tortosa Deltebre)", en el que además se rescataban y nivelaban tres referencias conservadas de la nivelación que realizó la Confederación Sindical Hidrográfica del Ebro en 1927.

Habiendo transcurrido cerca de 10 años de dichas nivelaciones, se consideró altamente conveniente volver a realizar una nivelación de precisión de estos itinerarios, para verificar posibles movimientos altitudinales de las referencias y tener datos empíricos de la subsidencia que pueda haber acaecido en dicho periodo.

Para que esta operación fuera realizada con el máximo rigor, la Confederación Hidrográfica del Ebro solicitó la colaboración del Instituto Geográfico Nacional (IGN). Esto ha hecho que está nivelación de alta precisión se haya realizado con los estándares marcados por el IGN para la Red Española de Nivelación de Alta Precisión (REDNAP), y que además los itinerarios de esta nivelación queden integrados en REDNAP para futuras comprobaciones.

Para ello, el IGN, basándose en los itinerarios descritos por las nivelaciones de 2012, en el último trimestre de 2020 realizó una reseñalización de todos estos itinerarios. Cuando los clavos topográficos encontrados de las nivelaciones 2012 ofrecieron pruebas de integridad eran respetados, cuando no, el IGN estableció una nueva señal. En casos dudosos, se hicieron las dos cosas: el IGN señalizaba con un nuevo clavo, pero el antiguo se dejó para ser nivelado también por si podían ofrecer elementos adicionales para la comparativa con 2012. Estos clavos, fueron denominados "radiados" pues su nivelación se radiaba desde un nuevo clavo IGN. Estos clavos radiados se han nivelado, pero no formarán parte de REDNAP.

Al tiempo que reseñalizaba, el IGN tomó mediciones RTK y de gravedad para corregir las nivelaciones geométricas.

3. AMBITO DE ESTUDIO

Durante la presente campaña de nivelación se han realizado un total de 141 km de longitud en itinerarios de nivelación, considerando líneas principales, ramales, clavos radiados e itinerarios de comprobación.

El IGN ha establecido en el delta tres líneas principales (843, 844, 845) que parten de la línea REDNAP preexistente 226 Vinaroz-Tarragona y se unen entre sí a la altura de Deltebre y que a su vez conectan y permiten cerrar con dicha misma línea REDNAP, actualmente subdividida en las líneas 10226, 20226, 30226 y 40226 al crearse nuevos nodos de enlace con las nuevas líneas del delta. De las líneas 843, 844 y 845 parten los ramales que cubren el resto de itinerarios de la nivelación de 2012.

Las líneas y ramales REDNAP en el delta son finalmente los siguientes:

Líneas y ramales	Km
843	23,70
1843	6,96
2843	19,84
3843	8,87
4843	10,70
5843	17,79
6843	1,53
844	13,89
1844	1,02
2844	4,08
845	14,42
1845	8,34

Tabla 1: Líneas y ramales de nivelación

Aparte de la preexistente línea 226 que bordea el delta, este entramado NAP en el delta incluye puntos y ramales en el exterior del delta, que al igual que en este trabajo, servirán en el futuro para comprobaciones diferenciales respecto al interior del delta. Son básicamente los ramales 2843 y 1845 por canales de la margen derecha e izquierda del delta respectivamente, y también podrían considerarse así el 1843 a Sant Carles de la Rápita, al menos en este núcleo, y el ramal 1844 en L'Ampolla.

En las siguientes figuras se puede apreciar la distribución de los distintos itinerarios realizados en 2012 en el entorno del delta del Ebro, con las señales que en 2020 se conservaban en buen estado.

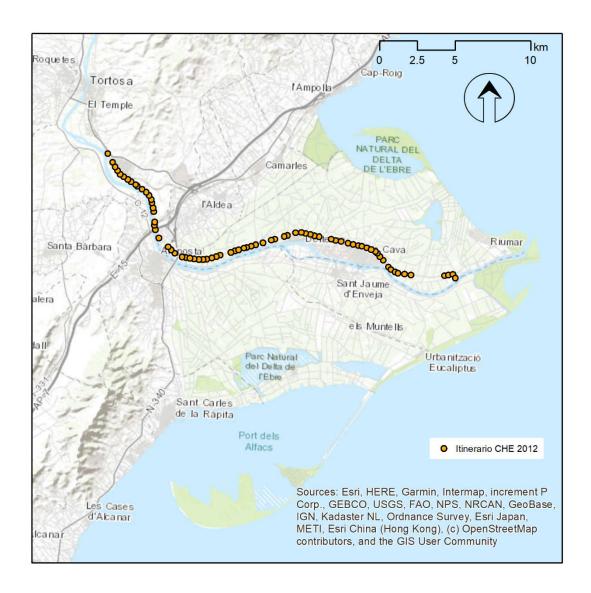


Figura 1: Itinerario CHE 2012. Señales conservadas

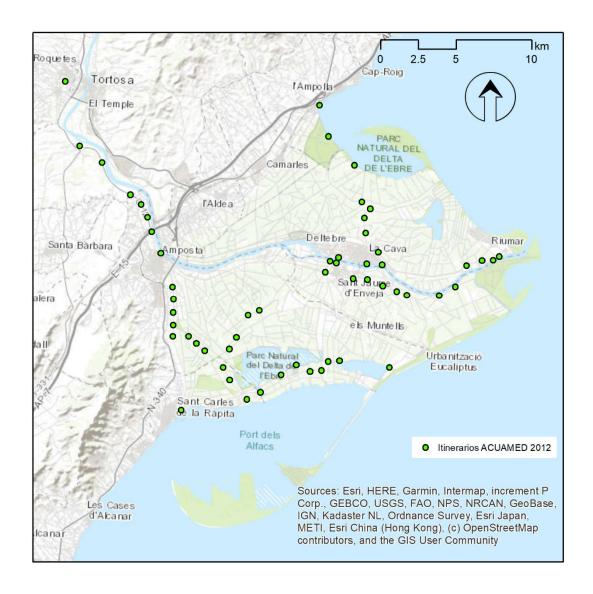


Figura 2: Itinerario ACUAMED 2012. Señales conservadas

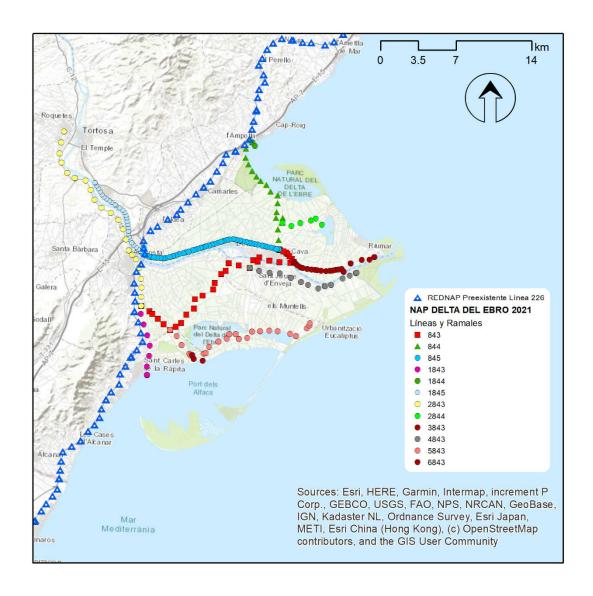


Figura 3: itinerarios NAP Delta del Ebro 2021

4. DESCRIPCIÓN DEL TRABAJO

Los trabajos han consistido en la nivelación geométrica de alta precisión de las distintas líneas de nivelación distribuidas por todo el delta del Ebro y sus inmediaciones, en la provincia de Tarragona.

El método empleado ha sido el de doble nivelación de ida y vuelta para el total de clavos que componen los itinerarios de nivelación ejecutados, sumando una distancia de 141 km para todas las líneas, ramales y puntos radiados, incluyendo itinerarios de comprobación.

Los trabajos se han realizado cumpliendo las "Normas para la Nivelación Geométrica de Precisión" que establece el Área de Geodesia del Instituto Geográfico Nacional para la Red Española de Nivelación de Alta Precisión (REDNAP). Estas normas desarrollan la metodología técnica a seguir para la observación de las líneas de Nivelación de Alta Precisión (NAP) de la Red Española, y se recogen en el anexo 7.1 de la presente memoria.

Las nivelaciones han sido validadas por el IGN conforme a lo prescrito en el pliego de prescripciones técnicas particulares.

La ejecución de los trabajos de campo se ha extendido entre los meses de abril y diciembre de 2021, considerando algunos parones intermedios dadas las adversas condiciones meteorológicas sobrevenidas en algunos periodos, las cuales impedían cumplir con las precisiones exigidas.

4.1. EQUIPOS UTILIZADOS

Se han utilizado niveles digitales Leica LS10 con trípode de fibra, así como miras invar Leica GPCL2 y Leica GPCL3 con sus respectivos puntales telescópicos.

Figura 4: Nivel LS10 observando hacia una mira invar GPCL3.

Figura 5: Nivel LS10 observando hacia una mira invar GPCL2.

Figura 6: Mira invar GPCL2 estacionada sobre un clavo.

Tanto los niveles digitales como las miras invar cuentan con sus correspondientes certificados de calibración para garantizar la correcta ejecución y precisión de los trabajos.

A continuación se presentan las especificaciones técnicas de los instrumentos utilizados:

Leica LS10

Precisión ¹ con mira Invar estándar	0.2 mm
Precision: con mira invar estandar Precisión ² con mira estándar	0,3 mm 1.0 mm
MEDICIÓN DE DISTANCIAS	1,0 mm
Precisión ¹	15 mm a 30 m
RANGO DE MEDICIÓN	13 min a 30 m
Alcance mínimo	1.8 m
Alcance máximo ⁴	110 m
Tiempo de medición	Normalmente 2.5 seg.
ENFOQUE AUTOMÁTICO	Normalmente 2,3 3eg.
Rango de trabajo	×
Tiempo para enfocar	×
CÁMARA GRAN ANGULAR	
Campo visual	×
Tasa de fotogramas	X
Enfoque	×
BRÚJULA DIGITAL	**
Precisión ⁶	×
COMPENSADOR	***
Rango de trabajo	± 9'
Precisión°	0,3"
Sensibilidad de campo magnéticos	≤ 1"
INTERFACES	
RS232/USB	×
Bluetooth*	~
MiniUSB	~
ALMACENAMIENTO DE DATOS	
Memoria interna	30 000 mediciones
Dispositivo de memoria USB	~
GENERAL	
Pantalla	3,6 pulgadas, QVGA, color, táctil
Aumentos de anteojo	32 x
Distancia mínima de enfoque	0,6 m
Nivel esférico electrónico	×
Peso (batería incluida)	3,7 kg
Batería interna / tiempo de funcionamiento	Intercambiable de ion-litio / 12 h
Alimentación externa	×
ESPECIFICACIONES AMBIENTALES	
Rango de temperaturas de trabajo	De -20 °C a +50 °C
Polvo / Agua (IEC 60529)	IP55
Humedad	95%, sin condensación

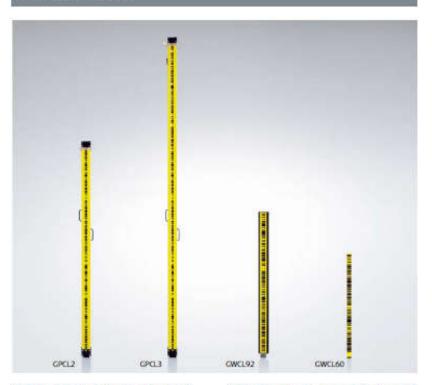

- Desviación tipica, 1 km doble nivelación, ISO 17123-2. Mira invar estándar GPCL3 o equivalente.
 Desviación tipica, 1 km doble nivelación, ISO 17123-2. Mira estándar GRNLAM o equivalente.
 Desviación tipica, 500 ppm hasta 50 m, 1.000 ppm para distancias de más de 50 m.
 Para miras estándar de más de 3 m de longitud, 60 m para miras invar.
 Diferencia de linea visual en campo magnético constante entre 0 y ±400 μT.
 Desviación tipica.

Figura 7: Especificaciones técnicas del nivel digital Leica LS10.

Miras de nivel LS / DNA

PROFESSIONAL 5000

GPCL2, Mira de nivelación de invar con código de barras

Mira de nivelación precisa con 2 niveles circulares. Asas para colocación estable. Longitud 2,0 m. Peso 4,2 kg. Artículo: 563659

GPCL3, Mira de nivelación de invar con código de barras

Mira de nivelación precisa con 2 niveles circulares. Asas para colocación estable. Longitud 3,0 m. Peso 4,9 kg. Artículo: 560271

GPCL3, Mira de nivelación de invarcon certificado

Mira de nivelación de precisión, comprobada individualmente para la mayor precisión. Incluye certificado de calibración de longitud y coeficiente de expansión. Longitud 3,0 m. Peso 4,9 kg.

Articulo: 560274

GWCL92, Mira de nivelación de invar con código de barras para aplicaciones industriales

Armazón ligero con nivel circular Base y borde intercambiables, ideal para aplicaciones industriales. Longitud 92 cm, peso 1,7 kg.

GWCL60, Escala de invar con código de harras

Escala de invar con orificios de tornillo para fijación en paredes. Ideal para supervisión de larga duración. Medidas 600x25x1,5mm. Para alcances de 1,8 - 20m.

Articulo: 563733

Artículo: 632313

Figura 8: Especificaciones técnicas de las miras invar.

4.2. METODOLOGÍA APLICADA

A continuación se describe a grandes rasgos la metodología que se deriva del cumplimiento de la normativa para nivelación geométrica de precisión en el ámbito de la REDNAP.

Por norma general los distintos clavos que componen los itinerarios de nivelación están separados en torno a 1 km. En algunas líneas esta distancia se reduce hasta los 250-300 m. Excepcionalmente algunos de los clavos están separados más allá de los 1,2 km.

4.2.1. SEÑALIZACIÓN

Previamente a la nivelación debe marcarse el itinerario a nivelar, para lo cual, con ayuda de cinta métrica y spray de pintura se señalan los distintos estacionamientos del nivel y las miras.

La distancia nivel mira no debe sobrepasar nunca los 25 metros según la normativa, por lo que se estableció por norma general una distancia de 22 metros para señalizar las distintas estaciones entre nivel y miras.

La diferencia entre las distancias de espalda y frente para cada estación no puede sobrepasar los 0,5 metros, siendo esta misma tolerancia la admitida para el conjunto del tramo.

Las lecturas en mira quedan limitadas al rango comprendido entre 0.5 m - 2.5 m para las miras de 3 metros de longitud y de 0.5 m - 1.8 m para las miras de 2 metros de longitud.

El número de estaciones de nivel debe ser par, a fin de empezar y terminar el tramo sobre la misma mira, eliminando así el posible error de talón de mira. Para garantizar esta condición se transportó en todo momento cinta métrica y spray, con el fin de añadir nuevas niveladas al tramo para cerrar sobre la mira de partida.

4.2.2. OBSERVACIÓN

Una vez marcados los tramos entre los distintos clavos se procedió a la observación de los mismos. Cada uno de los tramos se observó independientemente en sentido ida y en sentido vuelta.

Para cada estación se realizó una doble lectura de miras según el siguiente programa operativo (BFFB):

- ✓ Lectura mira espalda
- ✓ Lectura mira frente
- ✓ Lectura mira frente
- ✓ Lectura mira espalda

De este modo se obtienen y promedian 2 desniveles para cada estación, tanto en sentido ida como en sentido vuelta.

Para cada una de las lecturas en mira se promedian 3 medidas de la misma según la configuración establecida en el instrumento. La tolerancia por estación quedó establecida en 0,4 mm.

Para garantizar el cumplimiento de todos los estándares de calidad definidos en la normativa se configuraron los avisos y tolerancias dentro de la operativa de los niveles. A continuación se exponen los valores considerados para la ejecución de los trabajos:

- ✓ Distancia mínima: 5 m
- ✓ Distancia máxima: 25 m
- ✓ Balance de distancia entre lectura espalda y lectura frente por estación: 0,5 m
- ✓ Balance de distancias en el total del tramo: 0,5 m
- ✓ Lectura superior máxima de mira GPCL3: 2,5 m
- ✓ Lectura inferior mínima de mira GPCL3: 0,5 m
- ✓ Lectura superior máxima de mira GPCL2: 1,8 m
- ✓ Lectura inferior mínima de mira GPCL2: 0,5 metros
- ✓ Diferencia máxima permitida por estación: 0,0004 metros

Ante cualquier aviso de incumplimiento de dichos parámetros se procedió a subsanar la situación para cumplir con las tolerancias establecidas.

4.2.3. CALCULO DE DESNIVELES

Finalizado cada tramo de nivelación se toma nota del desnivel obtenido tanto para la ida como para la vuelta.

La tolerancia entre ida y vuelta de cada tramo se fija en $(1,5 \times \sqrt{k})$ mm, siendo k la longitud del tramo expresada en kilómetros.

Se han repetido todos los tramos fuera de tolerancia hasta alcanzar su pleno cumplimiento.

5. RESULTADOS DE CAMPO

En las siguientes tablas se presentan los resultados de campo obtenidos a partir de las observaciones de campo para cada una de las líneas y ramales nivelados.

También se presentan los resultados para aquellos clavos que aun estando fuera de los itinerarios principales, fueron radiados desde alguno de los clavos que forman parte del itinerario principal.

La representación gráfica de líneas y ramales se ha recogido en la Figura 3, y los detalles de cada punto en el Anexo 2 de reseñas. En estas reseñas a cada punto se le asigna un número y un nombre. Este nombre se corresponde con la identificación de las señales de 2012 y cuando lleva el añadido IGN, se trata de una señal de 2012 en mal estado que ha debido ser sustituida. En caso contrario se trata de una señal conservada y reutilizada.

Todas las unidades en metros.

5.1. LÍNEA 843

Este itinerario de nivelación parte del nodo 242 perteneciente a la línea REDNAP 20226 y llega hasta el nodo 245, muy próximo a la localidad de La Cava, en el centro del delta. El nodo 245 además sirve de enlace con las líneas 844 y 845.

ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist _{IDA}	Dist _{VUELTA}	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
242	13.7970								
843001		-8.50261	8.50362	1071.35	1066.24	-8.50312	5.29389	0.00101	0.00155
843002		-3.51592	3.51736	996.12	997.16	-3.51664	1.77725	0.00144	0.00150
843003		0.68920	-0.68971	360.17	359.90	0.68946	2.46670	-0.00051	0.00090
843004		-0.13569	0.13593	725.59	725.27	-0.13581	2.33089	0.00024	0.00128
843005		-0.12502	0.12625	749.33	748.94	-0.12564	2.20526	0.00123	0.00130
843006		0.13892	-0.13819	812.23	812.24	0.13856	2.34381	0.00073	0.00135
843007		0.00768	-0.00768	39.03	39.02	0.00768	2.35149	0.00000	0.00030
843008		-1.07344	1.07383	613.88	613.92	-1.07364	1.27786	0.00039	0.00118
843009		0.11851	-0.11794	654.00	653.98	0.11823	1.39608	0.00057	0.00121
843010		-0.34422	0.34516	1046.10	1045.72	-0.34469	1.05139	0.00094	0.00153
843011		1.13125	-1.13137	947.16	947.84	1.13131	2.18270	-0.00012	0.00146
843012		-0.75458	0.75615	1139.95	1138.10	-0.75537	1.42734	0.00157	0.00160
843013		0.49814	-0.49709	791.40	791.57	0.49762	1.92495	0.00105	0.00133
843014		-0.22087	0.22092	35.14	35.14	-0.22090	1.70406	0.00005	0.00028

ID	Z SALIDA	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist IDA	Dist VUELTA	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
843015		1.60921	-1.60849	1149.57	1149.64	1.60885	3.31291	0.00072	0.00161
843016		-2.06566	2.06678	629.44	629.63	-2.06622	1.24669	0.00112	0.00119
843017		2.77896	-2.77842	1068.88	1068.80	2.77869	4.02538	0.00054	0.00155
843018		-0.49779	0.49889	582.16	582.20	-0.49834	3.52704	0.00110	0.00114
843019		0.67114	-0.67112	791.56	791.68	0.67113	4.19817	0.00002	0.00133
843020		-0.64782	0.64787	28.88	28.88	-0.64785	3.55032	0.00005	0.00025
843021		0.31152	-0.31031	1162.36	1162.16	0.31092	3.86124	0.00121	0.00162
843022		0.20238	-0.20252	1055.35	1055.32	0.20245	4.06369	-0.00014	0.00154
843023		-0.67537	0.67666	810.81	810.70	-0.67602	3.38767	0.00129	0.00135
843024		1.20446	-1.20402	444.50	444.41	1.20424	4.59191	0.00044	0.00100
843025		-1.27537	1.27545	397.11	397.01	-1.27541	3.31650	0.00008	0.00095
843026		-0.96557	0.96643	1067.02	1067.00	-0.96600	2.35050	0.00086	0.00155
843027		0.68853	-0.68849	33.56	33.63	0.68851	3.03901	0.00004	0.00027
843028		-0.83257	0.83324	967.40	970.25	-0.83291	2.20611	0.00067	0.00148
843029		-0.02443	0.02479	1031.34	1005.99	-0.02461	2.18150	0.00036	0.00151
843030		0.66527	-0.66495	416.23	415.48	0.66511	2.84661	0.00032	0.00097
843031		0.10736	-0.10684	324.60	324.63	0.10710	2.95371	0.00052	0.00085
843032		-0.06282	0.06336	350.30	350.29	-0.06309	2.89062	0.00054	0.00089
843033		0.58813	-0.58752	281.61	281.71	0.58783	3.47844	0.00061	0.00080
843034		-0.58783	0.58842	187.16	187.14	-0.58813	2.89032	0.00059	0.00065
843035		0.06247	-0.06178	297.11	297.16	0.06213	2.95244	0.00069	0.00082
843036		0.06935	-0.06907	326.23	326.20	0.06921	3.02165	0.00028	0.00086
843037		0.64958	-0.64951	126.20	126.20	0.64955	3.67120	0.00007	0.00053
245		-1.00548	1.00550	37.89	37.82	-1.00549	2.66571	0.00002	0.00029

> Clavos radiados desde la línea 843

ID	ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist IDA	Dist _{VUELTA}	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
Ang-02	843004R	2.33089	-0.00414	0.00415	14.63	14.63	-0.00415	2.32675	0.00001	0.00018
Ang-03	843005R	2.20526	0.00280	-0.00278	10.08	10.08	0.00279	2.20805	0.00002	0.00015
Sj-01	843009R	1.39608	-0.33890	0.33890	15.42	15.42	-0.33890	1.05718	0.00000	0.00019
Sj-10	843022R	4.06369	-0.10138	0.10138	21.83	21.83	-0.10138	3.96231	0.00000	0.00022
Sj-11	843023R	3.38767	0.01448	-0.01452	14.66	14.66	0.01450	3.40217	-0.00004	0.00018
Sj-12	843024R	4.59191	0.07634	-0.07632	16.84	16.84	0.07633	4.66824	0.00002	0.00019
Dlb-03	843028R	2.20611	-0.05281	0.05282	27.53	27.53	-0.05282	2.15329	0.00001	0.00025
S22	843035R	2.95244	0.01223	-0.01229	25.34	25.34	0.01226	2.96470	-0.00006	0.00024

5.2. LÍNEA 844

Este itinerario de nivelación parte del nodo 245 en La Cava y llega hasta el nodo 244 situado en La Ampolla y perteneciente a la línea REDNAP 30226.

ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist IDA	Dist _{VUELTA}	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
245	2.66571								
844001		-0.77125	0.77099	943.80	943.75	-0.77112	1.89459	-0.00026	0.00146
844002		0.00956	-0.00967	1008.31	1008.61	0.00962	1.90420	-0.00011	0.00151
844003		-0.32448	0.32484	890.42	890.29	-0.32466	1.57954	0.00036	0.00142
844004		0.63370	-0.63278	512.60	512.42	0.63324	2.21278	0.00092	0.00107
844005		0.30270	-0.30199	650.80	650.68	0.30235	2.51513	0.00071	0.00121
844006		-1.79439	1.79459	609.16	609.03	-1.79449	0.72064	0.00020	0.00117
844007		0.03420	-0.03363	827.99	828.09	0.03392	0.75455	0.00057	0.00136
844008			DES	APARECIDO	. SE NIVELA D	EL 844007 AL 8	44009		
844009		0.72901	-0.72998	788.29	788.43	0.72950	1.48405	-0.00097	0.00133
844010		-0.35988	0.35958	733.58	733.46	-0.35973	1.12432	-0.00030	0.00128
844011		0.09067	-0.09034	742.06	741.88	0.09051	1.21482	0.00033	0.00129
844012		0.37106	-0.37032	719.79	719.79	0.37069	1.58551	0.00074	0.00127
844013		-0.00035	0.00030	633.56	633.61	-0.00033	1.58519	-0.00005	0.00119
844014		0.30194	-0.30216	762.43	762.23	0.30205	1.88724	-0.00022	0.00131
844015		-0.56915	0.56964	788.51	788.16	-0.56940	1.31784	0.00049	0.00133
844016		-0.14854	0.14874	729.63	729.80	-0.14864	1.16920	0.00020	0.00128
844017		1.30677	-1.30597	893.78	893.60	1.30637	2.47557	0.00080	0.00142
844018		3.54709	-3.54752	915.49	914.78	3.54731	6.02288	-0.00043	0.00143
844019		5.02609	-5.02646	597.73	597.79	5.02628	11.04915	-0.00037	0.00116
244		1.04344	-1.04330	74.01	74.01	1.04337	12.09252	0.00014	0.00041

COTA IGN 12.08890

DIFERENCIA 0.00362

Se anota el error de cierre del itinerario al enlazar con un nodo REDNAP, en este caso el clavo 244 de la línea 30226.

> Clavos radiados desde la línea 844

ID	ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist IDA	Dist VUELTA	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
Apl-06	844003R	1.57954	0.69428	-0.69431	45.83	45.83	0.694295	2.27384	-0.00003	0.00032
Apl-12	844014R	1.88724	-0.53735	0.53734	18.52	18.52	-0.537345	1.34989	-0.00001	0.00020
Apl-13	844015R	1.31784		CLAVO INUTILIZADO						

5.3. LÍNEA 845

Este itinerario de nivelación parte del nodo 245 en La Cava y llega hasta el nodo 243, situado próximo a Amposta y perteneciente a la línea REDNAP 30226.

ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist IDA	Dist _{VUELTA}	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
245	2.66571								
845001		0.36498	-0.36481	243.60	243.49	0.36490	3.03060	0.00017	0.00074
845002		0.04235	-0.04220	248.22	248.23	0.04228	3.07288	0.00015	0.00075
845003		0.21009	-0.20986	343.40	343.41	0.20998	3.28285	0.00023	0.00088
845004		-0.07870	0.07898	357.05	357.04	-0.07884	3.20401	0.00028	0.00090
845005		0.05325	-0.05313	221.29	221.32	0.05319	3.25720	0.00012	0.00071
845006		0.55008	-0.54970	263.01	263.00	0.54989	3.80709	0.00038	0.00077
845007		-0.43244	0.43291	392.81	392.83	-0.43268	3.37442	0.00047	0.00094
845008		-0.02694	0.02733	302.13	302.10	-0.02714	3.34728	0.00039	0.00082
845009		0.05262	-0.05229	295.71	295.68	0.05246	3.39974	0.00033	0.00082
845010		-0.02320	0.02331	247.63	247.62	-0.02326	3.37648	0.00011	0.00075
845011		0.54377	-0.54329	259.32	259.29	0.54353	3.92001	0.00048	0.00076
845012		-0.48829	0.48905	324.68	324.71	-0.48867	3.43134	0.00076	0.00085
845013		0.53738	-0.53705	284.45	284.46	0.53722	3.96856	0.00033	0.00080
845014		0.13047	-0.13046	28.20	28.18	0.13047	4.09902	0.00001	0.00025
845015		-0.57025	0.57084	332.68	332.46	-0.57055	3.52848	0.00059	0.00087
845016		0.05863	-0.05807	286.28	286.29	0.05835	3.58683	0.00056	0.00080
845017		1.36444	-1.36410	384.67	384.69	1.36427	4.95110	0.00034	0.00093
845018		-1.27544	1.27581	294.18	294.17	-1.27563	3.67547	0.00037	0.00081
845019		0.40440	-0.40406	292.53	292.54	0.40423	4.07970	0.00034	0.00081
845020		-0.07122	0.07153	217.97	217.96	-0.07138	4.00833	0.00031	0.00070
845021		0.08502	-0.08441	303.32	303.32	0.08472	4.09304	0.00061	0.00083
845022		0.57848	-0.57811	343.27	343.30	0.57830	4.67134	0.00037	0.00088
845023		-0.53108	0.53142	261.27	261.27	-0.53125	4.14009	0.00034	0.00077
845024		0.04715	-0.04693	268.60	268.60	0.04704	4.18713	0.00022	0.00078
845025		0.56716	-0.56697	301.41	301.40	0.56707	4.75419	0.00019	0.00082
845026		-0.55546	0.55577	240.22	240.20	-0.55562	4.19858	0.00031	0.00074
845027		-0.22189	0.22208	246.31	246.30	-0.22199	3.97659	0.00019	0.00074
845028		0.46630	-0.46632	24.78	24.78	0.46631	4.44290	-0.00002	0.00024
845029		-0.01075	0.01104	298.53	298.49	-0.01090	4.43201	0.00029	0.00082
845030		0.30159	-0.30131	301.41	301.42	0.30145	4.73346	0.00028	0.00082
845031		-0.00681	0.00711	206.13	206.10	-0.00696	4.72650	0.00030	0.00068
845032		-0.26540	0.26539	372.79	372.74	-0.26540	4.46110	-0.00001	0.00092
845033		0.86014	-0.85946	251.21	251.21	0.85980	5.32090	0.00068	0.00075
845034		-1.00017	1.00050	315.60	315.59	-1.00034	4.32057	0.00033	0.00084
845035		0.89590	-0.89560	392.40	392.39	0.89575	5.21632	0.00030	0.00094

ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist IDA	Dist VUELTA	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
845036		-0.85627	0.85674	348.55	348.48	-0.85651	4.35981	0.00047	0.00089
845037		0.44748	-0.44750	263.43	263.40	0.44749	4.80730	-0.00002	0.00077
845038		0.07517	-0.07486	321.36	321.41	0.07502	4.88232	0.00031	0.00085
845039		0.05005	-0.04955	343.10	343.08	0.04980	4.93212	0.00050	0.00088
845040		0.62600	-0.62596	243.17	243.12	0.62598	5.55810	0.00004	0.00074
845041		0.01455	-0.01449	38.12	38.06	0.01452	5.57262	0.00006	0.00029
845042		-0.56693	0.56712	291.97	292.02	-0.56703	5.00559	0.00019	0.00081
845043		-0.00067	0.00064	319.44	319.39	-0.00066	5.00494	-0.00003	0.00085
845044		0.01888	-0.01848	280.85	280.89	0.01868	5.02362	0.00040	0.00079
845045		0.65558	-0.65494	255.68	255.72	0.65526	5.67888	0.00064	0.00076
845046		-0.55411	0.55456	251.45	251.42	-0.55434	5.12454	0.00045	0.00075
845047		0.12426	-0.12389	336.01	336.04	0.12408	5.24862	0.00037	0.00087
845048		0.02444	-0.02428	223.22	223.20	0.02436	5.27298	0.00016	0.00071
845049		0.02091	-0.02072	332.74	332.75	0.02082	5.29379	0.00019	0.00087
845050		-0.23415	0.23417	43.32	43.30	-0.23416	5.05963	0.00002	0.00031
845051		-0.61090	0.61162	432.91	432.86	-0.61126	4.44837	0.00072	0.00099
243		2.11206	-2.11163	162.48	162.47	2.11185	6.56022	0.00043	0.00060

COTA IGN 6.56040

DIFERENCIA -0.00018

Se anota el error de cierre del itinerario al enlazar con un nodo REDNAP, en este caso el clavo 243 de la línea 30226.

> Clavos radiados desde la línea 845

ID	ID	Z SALIDA	ΔΖ ΙΔΑ	ΔZ _{VUELTA}	Dist IDA	Dist VUELTA	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
S24	845001R	3.03060	-0.02891	0.02892	14.98	14.98	-0.02892	3.00169	0.00001	0.00018
S42	845020R	4.00833	-0.00084	0.00077	15.04	15.04	-0.00081	4.00752	-0.00007	0.00018
S46	845024R	4.18713				CLAVO II	NUTILIZADO			
S52	845032R	4.46110	0.24092	-0.24099	19.77	19.77	0.24096	4.70206	-0.00007	0.00021
S57	845037R	4.80730	-0.00587	0.00589	19.65	19.65	-0.00588	4.80142	0.00002	0.00021
S58	845038R	4.88232	-0.00622	0.00626	19.40	19.41	-0.00624	4.87608	0.00004	0.00021
S61	845042R	5.00559	-0.00229	0.00229	19.56	19.56	-0.00229	5.00330	0.00000	0.00021
S62	845043R	5.00494	-0.00310	0.00310	19.74	19.74	-0.00310	5.00184	0.00000	0.00021
S63	845044R	5.02362	-0.00853	0.00863	19.78	19.77	-0.00858	5.01504	0.00010	0.00021
S65	845046R	5.12454	0.00311	-0.00312	19.79	19.79	0.00312	5.12766	-0.00001	0.00021
S67	845048R	5.27298	-0.00537	0.00517	21.71	21.72	-0.00527	5.26771	-0.00020	0.00022

5.4. RAMAL 1843

El ramal 1843 parte de la línea 843 y discurre hasta el sur llegando hasta la localidad de San Carlos de la Rápita.

ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist _{IDA}	Dist _{VUELTA}	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
843001	5.29389								
1843001		-3.16815	3.16802	733.49	733.90	-3.16809	2.12580	-0.00013	0.00128
1843002		0.22351	-0.22205	1033.97	1033.81	0.22278	2.34858	0.00146	0.00153
1843003		0.11967	-0.11855	1048.20	1048.15	0.11911	2.46769	0.00112	0.00154
1843004		-0.19644	0.19605	1001.93	1001.85	-0.19625	2.27145	-0.00039	0.00150
1843005		-0.43191	0.43092	965.05	965.14	-0.43142	1.84003	-0.00099	0.00147
1843006		1.51121	-1.51112	996.22	996.75	1.51117	3.35120	0.00009	0.00150
1843007		-1.87443	1.87470	1118.68	1119.68	-1.87457	1.47663	0.00027	0.00159
1843008		1.25524	-1.25533	24.15	24.13	1.25529	2.73192	-0.00009	0.00023
1843009		-0.02957	0.02956	21.87	21.80	-0.02957	2.70235	-0.00001	0.00022

ID	ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist IDA	Dist VUELTA	ΔZ PROMEDIO	Z	ΣΔΖ	TOLERANCIA
SC-07	1843002R				CL	AVO INI	JTILIZADO			
SC-08	1843003R				CL	AVO INI	JTILIZADO			
SC-09	1843004R				CL	AVO INI	JTILIZADO			
SC-10	1843005R				CL	AVO INI	JTILIZADO			
SC- mareo_2	1843007R	1.47663	-0.00087	0.00087	11.85	11.85	-0.00087	1.47576	0.00000	0.00016

5.5. RAMAL 1844

El ramal 1844 parte de la línea 844 y llega hasta la punta del dique de abrigo en el puerto deportivo de La Ampolla.

ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist _{IDA}	Dist _{VUELTA}	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
844018	6.02288								
AUX		-4.24689	4.24659	1 006.27	1 001.54	-4.24674	1.77614	-0.00030	0.00150
1844001		2.68915	-2.68916	16.46	15.45	2.68916	4.46529	-0.00001	0.00019

5.6. RAMAL 1845

El ramal 1845 parte desde el final de la línea 845 y discurre por ribera Este del Ebro desde Amposta hacia Tortosa.

ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist _{IDA}	Dist _{VUELTA}	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
845049	5.29379								
1845001		0.45459	-0.45444	300.73	300.66	0.45452	5.74831	0.00015	0.00082
1845002		-0.55095	0.55113	259.42	259.39	-0.55104	5.19727	0.00018	0.00076
1845003		0.05974	-0.05895	320.64	321.51	0.05935	5.25661	0.00079	0.00085
1845004		0.03778	-0.03757	276.35	276.27	0.03768	5.29429	0.00021	0.00079
1845005		-0.01146	0.01193	347.40	347.56	-0.01170	5.28259	0.00047	0.00088
1845006		-0.03910	0.03925	259.99	259.96	-0.03918	5.24342	0.00015	0.00076
1845007		0.97502	-0.97519	294.69	294.53	0.97511	6.21852	-0.00017	0.00081
1845008		-0.49221	0.49254	288.02	288.13	-0.49238	5.72615	0.00033	0.00081
1845009		-0.27998	0.27984	290.22	290.21	-0.27991	5.44624	-0.00014	0.00081
1845010		-0.06966	0.07036	378.51	378.57	-0.07001	5.37623	0.00070	0.00092
1845011		0.04541	-0.04541	260.88	260.88	0.04541	5.42164	0.00000	0.00077
1845012		0.86537	-0.86504	328.66	328.66	0.86521	6.28684	0.00033	0.00086
1845013		0.09899	-0.09891	50.21	50.41	0.09895	6.38579	0.00008	0.00034
1845014		-0.89038	0.89094	250.93	250.96	-0.89066	5.49513	0.00056	0.00075
1845015		0.05521	-0.05501	303.80	303.78	0.05511	5.55024	0.00020	0.00083
1845016		-0.04197	0.04212	280.27	280.27	-0.04205	5.50820	0.00015	0.00079
1845017		0.83694	-0.83693	356.84	356.79	0.83694	6.34513	0.00001	0.00090
1845018		-0.68002	0.68051	373.37	373.34	-0.68027	5.66487	0.00049	0.00092
1845019		0.69047	-0.69001	132.66	132.64	0.69024	6.35511	0.00046	0.00055
1845020		0.04346	-0.04346	31.98	31.95	0.04346	6.39857	0.00000	0.00027
1845021		-0.67204	0.67254	390.80	390.85	-0.67229	5.72628	0.00050	0.00094
1845022		0.72359	-0.72316	296.35	296.50	0.72338	6.44965	0.00043	0.00082
1845023		-0.61345	0.61371	331.95	332.04	-0.61358	5.83607	0.00026	0.00086
1845024		-0.01990	0.02003	281.26	281.28	-0.01997	5.81611	0.00013	0.00080
1845025		0.09369	-0.09338	281.99	282.06	0.09354	5.90964	0.00031	0.00080
1845026		0.04366	-0.04359	298.21	298.19	0.04363	5.95327	0.00007	0.00082
1845027		0.05408	-0.05392	341.72	341.75	0.05400	6.00727	0.00016	0.00088
1845028		0.50394	-0.50380	349.86	349.82	0.50387	6.51114	0.00014	0.00089
1845029		-0.42752	0.42754	309.72	309.82	-0.42753	6.08361	0.00002	0.00083
1845030		0.01701	-0.01702	27.59	27.64	0.01702	6.10062	-0.00001	0.00025

ID	ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist IDA	Dist VUELTA	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
S71	1845004R	5.29429	-0.00785	0.00786	10.59	10.59	-0.00786	5.28643	0.00001	0.00015
S75	1845008R	5.72615	0.01592	-0.01591	30.45	30.44	0.01592	5.74206	0.00001	0.00026

5.7. RAMAL 2843

El ramal 2843 parte desde el comienzo de la línea 843 y discurre por la ribera Oeste del Ebro en dirección Tortosa.

ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist IDA	Dist _{VUELTA}	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
843001	5.29389								
2843001		-0.00424	0.00419	37.45	37.41	-0.00422	5.28967	-0.00005	0.00029
2843002		-1.84881	1.84995	839.60	839.67	-1.84938	3.44029	0.00114	0.00137
2843003		0.60352	-0.60249	890.78	890.85	0.60301	4.04330	0.00103	0.00142
2843004		0.13088	-0.13116	826.03	825.93	0.13102	4.17432	-0.00028	0.00136
2843005		0.72812	-0.72733	1039.68	1039.94	0.72773	4.90204	0.00079	0.00153
2843006		1.37184	-1.37099	885.54	885.69	1.37142	6.27346	0.00085	0.00141
2843007		5.1826	-5.18224	664.25	663.67	5.18242	11.45588	0.00036	0.00122
2843008		-5.24997	5.251	618.08	617.96	-5.25049	6.20539	0.00103	0.00118
2843009		-0.07859	0.07858	21.94	21.99	-0.07859	6.12681	-0.00001	0.00022
2843010		-0.18321	0.18447	1057.63	1057.41	-0.18384	5.94297	0.00126	0.00154
2843011		0.12027	-0.11909	995.70	995.54	0.11968	6.06265	0.00118	0.00150
2843012		1.43145	-1.43067	961.78	961.72	1.43106	7.49371	0.00078	0.00147
2843013		-1.12784	1.12849	1006.79	1006.50	-1.12817	6.36554	0.00065	0.00150
2843014		-0.22156	0.22239	976.58	976.65	-0.22198	6.14357	0.00083	0.00148
2843015		0.42718	-0.42710	991.51	991.17	0.42714	6.57071	0.00008	0.00149
2843016		0.14322	-0.14177	988.67	988.98	0.14250	6.71320	0.00145	0.00149
2843017		0.13949	-0.13856	1019.62	1019.62	0.13903	6.85223	0.00093	0.00151
2843018		1.57219	-1.57125	992.83	992.95	1.57172	8.42395	0.00094	0.00149
2843019		-0.88720	0.88754	58.67	58.72	-0.88737	7.53658	0.00034	0.00036
2843020		-0.34152	0.34108	848.97	848.75	-0.34130	7.19528	-0.00044	0.00138
2843021		0.02279	-0.02274	27.30	27.25	0.02277	7.21804	0.00005	0.00025
2843022		0.18779	-0.18657	1095.82	1096.16	0.18718	7.40522	0.00122	0.00157
2843023		-0.03020	0.03157	900.82	901.22	-0.03089	7.37434	0.00137	0.00142
2843024		0.16883	-0.16783	1028.97	1028.71	0.16833	7.54267	0.00100	0.00152
2843025		0.29705	-0.29653	1039.36	1039.52	0.29679	7.83946	0.00052	0.00153
2843026		-0.15317	0.15327	22.47	22.47	-0.15322	7.68624	0.00010	0.00022

ID	ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist _{IDA}	Dist _{VUELTA}	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
SC-01	2843005R				(CLAVO INUT	ILIZADO			

5.8. RAMAL 2844

El ramal 2844 enlaza la línea 844 con la estación biológica del canal viejo, junto a la laguna Bassa de l'Estella.

ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist _{IDA}	Dist _{VUELTA}	ΔZ _{PROMEDIO}	Z	Σ ΔΖ	TOLERANCIA
844003	1.57954								
2844001		0.03697	-0.03701	899.09	899.18	0.03699	1.61653	-0.00004	0.00142
2844002		0.01827	-0.01805	885.55	885.57	0.01816	1.63469	0.00022	0.00141
2844003		-0.48025	0.48095	1027.35	1027.46	-0.48060	1.15409	0.00070	0.00152
2844004		-0.06581	0.06671	467.04	467.05	-0.06626	1.08783	0.00090	0.00103
2844005		-0.24751	0.24766	800.77	800.89	-0.24759	0.84025	0.00015	0.00134

5.9. RAMAL 3843

El ramal 3843 parte desde la línea 843 en La Cava y discurre por la ribera norte del Ebro en dirección Riumar.

ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist IDA	Dist _{VUELTA}	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
843030	2.84661								
3843001		0.01891	-0.01821	247.70	247.69	0.01856	2.86517	0.00070	0.00075
3843002		-0.01295	0.01330	222.27	222.26	-0.01313	2.85204	0.00035	0.00071
3843003		-0.09142	0.09176	310.08	310.09	-0.09159	2.76045	0.00034	0.00084
3843004		-0.06144	0.06186	207.08	207.09	-0.06165	2.69880	0.00042	0.00068
3843005		-0.11409	0.11509	440.53	440.48	-0.11459	2.58421	0.00100	0.00100
3843006		-0.02316	0.02318	26.46	26.46	-0.02317	2.56104	0.00002	0.00024
3843007		-0.05385	0.05416	408.21	408.19	-0.05401	2.50704	0.00031	0.00096
3843008		0.00976	-0.00944	332.08	332.09	0.00960	2.51664	0.00032	0.00086
3843009		-0.02225	0.02236	201.29	201.30	-0.02231	2.49433	0.00011	0.00067
3843010		-0.22232	0.22237	357.26	357.28	-0.22235	2.27199	0.00005	0.00090
3843011		0.15735	-0.15681	468.85	468.87	0.15708	2.42907	0.00054	0.00103
3843012		0.01404	-0.01416	356.60	356.54	0.01410	2.44317	-0.00012	0.00090
3843013		-0.06189	0.06215	257.09	257.10	-0.06202	2.38115	0.00026	0.00076
3843014		-0.03866	0.03866	280.52	280.47	-0.03866	2.34249	0.00000	0.00079
3843015		0.02896	-0.02869	260.50	260.50	0.02883	2.37131	0.00027	0.00077
3843016		0.35351	-0.35388	304.38	304.35	0.35370	2.72501	-0.00037	0.00083
3843017		-0.19207	0.19176	295.44	295.46	-0.19192	2.53309	-0.00031	0.00082
3843018		-1.11457	1.11452	37.59	37.60	-1.11455	1.41855	-0.00005	0.00029
3843019		0.36440	-0.36432	1170.60	1169.96	0.36436	1.78291	0.00008	0.00162
3843020		-0.05877	0.06033	1081.34	1080.45	-0.05955	1.72336	0.00156	0.00156
3843021		-0.40670	0.40671	1019.59	980.12	-0.40671	1.31665	0.00001	0.00150
3843022		2.25772	-2.25737	495.85	495.75	2.25755	3.57420	0.00035	0.00106
3843023		-1.00562	1.00566	27.36	27.35	-1.00564	2.56856	0.00004	0.00025

ID	ID	Z _{SALIDA}	ΔΖ ΙΔΑ	ΔZ _{VUELTA}	Dist IDA	Dist VUELTA	ΔZ PROMEDIO	Z	ΣΔΖ	TOLERANCIA
S13	3843004R	2.69880	0.01861	-0.01859	17.82	17.81	0.01860	2.71740	0.00002	0.00020
S06	3843011R				CL	AVO INI	JTILIZADO			
S05	3843012R				CL	AVO INI	JTILIZADO			
AUX CSHE2	3843017R	2.53309	0.30140	-0.30137	12.80	12.80	0.30139	2.83448	0.00003	0.00017
DIB-10	3843019R	1.782905	0.17779	-0.17781	10.04	10.04	0.17780	1.96071	-0.00002	0.00015
-	3843023R	2.568555	0.42424	-0.42424	21.47	21.47	0.42424	2.99280	0.00000	0.00022

5.10. RAMAL 4843

El ramal 4843 parte desde la línea 843 en la zona de Sant Jaume y discurre por la ribera sur del Ebro en dirección Este.

ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist IDA	Dist _{VUELTA}	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
843022	4.06369								
4843001		-1.08606	1.08663	916.66	922.85	-1.08635	2.97734	0.00057	0.00144
4843002		1.04768	-1.04776	1007.99	1008.01	1.04772	4.02506	-0.00008	0.00151
4843003		-0.91657	0.91681	953.77	954.00	-0.91669	3.10837	0.00024	0.00147
4843004		-0.17755	0.17739	1104.13	1101.85	-0.17747	2.93090	-0.00016	0.00158
4843005		-0.17424	0.17557	1010.63	1010.92	-0.17491	2.75600	0.00133	0.00151
4843006		0.29423	-0.29448	705.06	705.10	0.29436	3.05035	-0.00025	0.00126
4843007		-0.40408	0.40509	1007.45	1017.11	-0.40459	2.64577	0.00101	0.00151
4843008		0.34057	-0.34037	660.62	660.57	0.34047	2.98624	0.00020	0.00122
4843009		-0.46681	0.46686	27.52	27.52	-0.46684	2.51940	0.00005	0.00025
4843010		0.33131	-0.33043	599.48	599.59	0.33087	2.85027	0.00088	0.00116
4843011		-0.06594	0.06691	1266.14	1266.48	-0.06643	2.78385	0.00097	0.00169
4843012		-0.52648	0.52698	686.70	686.80	-0.52673	2.25712	0.00050	0.00124
4843013		-0.73504	0.73567	613.48	613.98	-0.73536	1.52176	0.00063	0.00118
4843014		0.60599	-0.6059	73.99	74.01	0.60595	2.12771	0.00009	0.00041
4843015		-0.02683	0.02684	26.38	26.36	-0.02684	2.10087	0.00001	0.00024

ID	ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist IDA	Dist _{VUELTA}	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
Mgj-04	4843004R	2.93090	-0.01344	0.01345	14.34	14.34	-0.01345	2.91746	0.00001	0.00018
Mgj-05	4843005R	2.75600	-0.00071	0.00073	17.62	17.62	-0.00072	2.75528	0.00002	0.00020
Mgj-07	4843007R	2.64577		CLAVO INUTILIZADO						
Mgj-08	4843010R	2.85027	0.57533	-0.57534	10.16	10.16	0.57534	3.42561	-0.00001	0.00015

5.11. RAMAL 5843

El ramal 5843 parte desde la línea 843 en la zona de Sur del delta y discurre bordeando las lagunas del Clot y la Tancada llegando muy cerca de Eucaliptus.

ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist _{IDA}	Dist _{VUELTA}	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
843007	2.35149								
5843001		-0.28334	0.28357	861.86	862.57	-0.28346	2.06804	0.00023	0.00139
5843002		-0.68512	0.68615	935.53	935.80	-0.68564	1.38240	0.00103	0.00145
5843003		0.13803	-0.13788	1067.90	1067.98	0.13796	1.52036	0.00015	0.00155
5843004		-0.39876	0.39884	222.17	222.15	-0.39880	1.12156	0.00008	0.00071
5843005		1.79422	-1.79431	111.88	111.90	1.79427	2.91582	-0.00009	0.00050
5843006		0.01774	-0.01783	23.94	23.92	0.01779	2.93361	-0.00009	0.00023
5843009		-0.31606	0.31648	1082.33	1081.97	-0.31627	2.61734	0.00042	0.00156
5843010		-1.61613	1.61631	231.74	231.69	-1.61622	1.00112	0.00018	0.00072
5843011		0.00920	-0.00897	862.93	862.88	0.00909	1.01020	0.00023	0.00139
5843012		0.34079	-0.34078	1001.25	1000.38	0.34079	1.35099	0.00001	0.00150
5843013		-0.48992	0.48958	1033.29	1033.07	-0.48975	0.86124	-0.00034	0.00152
5843014		0.52999	-0.52994	650.64	650.46	0.52997	1.39120	0.00005	0.00121
5843015		-0.57095	0.57087	654.58	654.50	-0.57091	0.82029	-0.00008	0.00121
5843016		0.02194	-0.02198	31.03	31.03	0.02196	0.84225	-0.00004	0.00026
5843017		0.41602	-0.41570	728.18	728.30	0.41586	1.25811	0.00032	0.00128
5843018		1.30465	-1.30417	766.57	766.43	1.30441	2.56252	0.00048	0.00131
5843019		-0.88633	0.88712	1094.92	1094.70	-0.88673	1.67580	0.00079	0.00157
5843020		-0.55540	0.55579	777.59	777.70	-0.55560	1.12020	0.00039	0.00132
5843021		1.45135	-1.45052	942.44	942.47	1.45094	2.57114	0.00083	0.00146
5843022		-1.09762	1.09776	817.39	817.26	-1.09769	1.47345	0.00014	0.00136
5843023		0.47160	-0.47097	1203.67	1203.83	0.47129	1.94473	0.00063	0.00165
5843024		-0.95136	0.95151	586.82	586.66	-0.95144	0.99330	0.00015	0.00115
5843025		-0.04928	0.05001	1278.36	1278.13	-0.04965	0.94365	0.00073	0.00170
5843026		0.56651	-0.56611	357.77	357.62	0.56631	1.50996	0.00040	0.00090
5843027		-0.07465	0.07462	22.88	22.85	-0.07464	1.43533	-0.00003	0.00023
5843028		0.49897	-0.49856	306.32	306.23	0.49877	1.93409	0.00041	0.00083

ID	ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist IDA	Dist _{VUELTA}	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
Ang-06	5843002R	1.38240	0.44001	-0.44012	15.34	15.35	0.44007	1.82247	-0.00011	0.00019
Ang-08	5843004R	1.12156	0.03931	-0.03929	16.39	16.39	0.03930	1.16086	0.00002	0.00019
Irta-01	5843005R	2.91582	0.23318	-0.23320	18.15	18.15	0.23319	3.14901	-0.00002	0.00020

ID	ID	Z SALIDA	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist IDA	Dist VUELTA	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
Pn-03	5843012R	1.35099	-0.10040	0.10037	11.51	11.51	-0.10039	1.25060	-0.00003	0.00016
Pn-05	5843014R	1.39120	0.00622	-0.00626	13.68	13.69	0.00624	1.39744	-0.00004	0.00018
Pn-06	5843017R	1.25811	0.18949	-0.18947	19.56	19.56	0.18948	1.44759	0.00002	0.00021
Buda-01	5843019R	1.67580	-0.52615	0.52615	10.74	10.74	-0.52615	1.14965	0.00000	0.00016
Buda-02	5843020R	1.12020	0.05204	-0.05205	17.22	17.22	0.05205	1.17225	-0.00001	0.00020
Buda-03	5843022R		CLAVO INUTILIZADO							
Buda-04	5843024R	0.99330	-0.01330	0.01329	13.05	13.05	-0.01330	0.98000	-0.00001	0.00017

5.12. RAMAL 6843

El ramal 6843 parte desde el ramal 5843 llegando hasta el borde costero cerca del IRTA San Carlos de la Rápita.

ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist _{IDA}	Dist _{VUELTA}	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
5843006	2.93361								
6843001		-1.86276	1.86325	443.83	443.77	-1.86301	1.07060	0.00049	0.00100
6843002		0.04161	-0.04119	1069.97	1071.06	0.04140	1.11200	0.00042	0.00155

ID	ID	Z SALIDA	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist IDA	Dist VUELTA	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
Irta-02	6843001R	1.07060	-0.01105	0.01095	12.64	12.63	-0.01100	1.05960	-0.00010	0.00017

5.13. COMPROBACIONES

Para verificar la estabilidad de los nodos de partida y cierre de los itinerarios principales se procedió a realizar un tramo de comprobación hasta el clavo anterior o posterior de la línea REDNAP.

A continuación se presentan los resultados obtenidos.

ID	Z _{SALIDA}	ΔZ _{IDA}	ΔZ _{VUELTA}	Dist IDA	Dist VUELTA	ΔZ _{PROMEDIO}	Z	ΣΔΖ	TOLERANCIA
242	13.7970								
10226033		-1.34487	1.34344	956.59	956.50	-1.34416	12.45285	-0.00143	0.00147
						COTA IGN	12.44960		
						DIFERENCIA	0.00324		
243	6.5604								
30226142		5.51021	-5.50998	817.04	816.86	5.51010	12.07050	0.00023	0.00136
30226043		-3.44317	3.44362	1279.67	1279.99	-3.44340	8.62710	0.00045	0.00170
						COTA IGN	8.62590		
						DIFERENCIA	0.00120		
244	12.0889								
30226059		0.55726	-0.55829	850.67	850.31	0.55778	12.64668	-0.00103	0.00138
						COTA IGN	12.6481		
						DIFERENCIA	-0.00142		

6. AJUSTE DE LA RED Y RESULTADOS DEFINITIVOS

Este proceso ha estado a cargo del área de geodesia del IGN, al tratarse de datos que pasan a formar parte de la Red de Nivelación de Alta Precisión REDNAP.

Una vez calibradas todas las observaciones y ajustada la red de nivelación, el IGN reporta las siguientes altitudes ortométricas para los distintos clavos que la componen.

LINEA	PUNTO	COTA ORTOMÉTRICA 2021
		m
843	242	13.7970
843	843001	5.2939
843	843002	1.7771
843	843003	2.4665
843	843004	2.3307
843	843005	2.2050
843	843006	2.3435
843	843007	2.3511
843	843008	1.2774
843	843009	1.3956
843	843010	1.0509
843	843011	2.1822
843	843012	1.4267
843	843013	1.9243
843	845014	1.7034
843	843015	3.3123
843	843016	1.2460
843	843017	4.0248
843	843018	3.5264
843	843019	4.1975
843	843020	3.5496
843	843021	3.8605
843	843022	4.0629
843	843023	3.3867
843	843024	4.5910
843	843025	3.3155
843	843026	2.3496
843	843027	3.0381
843	843028	2.2052
843	843029	2.1806
843	843030	2.8458

		COTA ORTOMÉTRICA		
LINEA	PUNTO	2021		
		m		
843	843031	2.9528		
843	843032	2.8897		
843	843033	3.4775		
843	843034	2.8894		
843	843035	2.9515		
843	843036	3.0207		
843	843037	3.6703		
843	245	2.6648		
843	843004R	2.3267		
843	843005R	2.2078		
843	843009R	1.0568		
843	843022R	3.9616		
843	843023R	3.4013		
843	843024R	4.6674		
843	843028R	2.1525		
843	843035R	2.9639		
844	245	2.6648		
844	844001	1.8937		
844	844002	1.9033		
844	844003	1.5786		
844	844004	2.2112		
844	844005	2.5132		
844	844006	0.7187		
844	844007	0.7525		
844	844009	1.4815		
844	844010	1.1217		
844	844011	1.2122		
844	844012	1.5825		
844	844013	1.5822		
844	844014	1.8843		
844	844015	1.3148		
844	844016	1.1661		
844	844017	2.4722		
844	844018	6.0195		
844	844019	11.0457		
844	244	12.0889		
844	844003R	2.2729		
844	844014R	1.3470		

		COTA ORTOMÉTRICA
LINEA	PUNTO	2021
LINEA	101110	m
845	245	2.6648
845	845001	3.0297
845	845002	3.0720
845	845003	3.2820
845	845004	3.2031
845	845005	3.2563
845	845006	3.8063
845	845007	3.3736
845	845008	3.3465
845	845009	3.3990
845	845010	3.3757
845	845011	3.9193
845	845012	3.4307
845	845013	3.9679
845	845014	4.0984
845	845015	3.5279
845	845016	3.5863
845	845017	4.9506
845	845018	3.6750
845	845019	4.0792
845	845020	4.0079
845	845021	4.0926
845	845022	4.6710
845	845023	4.1397
845	845024	4.1868
845	845025	4.7538
845	845026	4.1982
845	845027	3.9763
845	845028	4.4426
845	845029	4.4317
845	845030	4.7331
845	845031	4.7262
845	845032	4.4608
845	845033	5.3207
845	845034	4.3204
845	845035	5.2161
845	845036	4.3596
845	845037	4.8071
845	845038	4.8821
845	845039	4.9320

	COTA ORTOMÉTRICA		
PUNTO	2021		
	m		
845040	5.5580		
845041	5.5725		
845042	5.0055		
845043	5.0048		
845044	5.0235		
845045	5.6789		
845046	5.1246		
845047	5.2487		
845048	5.2730		
845049	5.2938		
845050	5.0597		
845051	4.4485		
243	6.5604		
845001R	3.0008		
845020R	4.0070		
845032R	4.7017		
845037R	4.8012		
845038R	4.8759		
845042R	5.0032		
845043R	5.0017		
845044R	5.0149		
845046R	5.1277		
845048R	5.2677		
843001	5.2939		
1843001	2.1258		
1843002	2.3486		
1843003	2.4677		
1843004	2.2715		
1843005	1.8400		
1843006	3.3512		
1843007	1.4766		
1843008	2.7319		
1843009 2.7024			
1843007R 1.4757			
844018	6.0195		
1844001	4.4617		
845049	5.2938		
	845040 845041 845042 845043 845044 845045 845046 845047 845048 845049 845050 845051 243 845001R 845020R 845032R 845032R 845037R 845038R 845042R 845048R		

		COTA ORTOMÉTRICA		
LINEA	PUNTO	2021		
		m		
1845	1845001	5.7483		
1845	1845002	5.1973		
1845	1845003	5.2566		
1845	1845004	5.2943		
1845	1845005	5.2826		
1845	1845006	5.2434		
1845	1845007	6.2185		
1845	1845008	5.7261		
1845	1845009	5.4462		
1845	1845010	5.3762		
1845	1845011	5.4216		
1845	1845012	6.2868		
1845	1845013	6.3858		
1845	1845014	5.4951		
1845	1845015	5.5502		
1845	1845016	5.5081		
1845	1845017	6.3451		
1845	1845018	5.6648		
1845	1845019	6.3550		
1845	1845020	6.3985		
1845	1845021	5.7263		
1845	1845022	6.4497		
1845	1845023	5.8361		
1845	1845024	5.8161		
1845	1845025	5.9096		
1845	1845026	5.9532		
1845	1845027	6.0072		
1845	1845028	6.5111		
1845	1845029	6.0835		
1845	1845030	6.1006		
1845	1845004R	5.2865		
1845	1845008R	5.7421		
2843	843001	5.2939		
2843	2843001 5.2897			
2843	2843002 3.4403			
2843	2843004	4.0433		
2843	2843004	4.1743		
2843	2843005	4.9021		
2843	2843006	6.2735		

		COTA ORTOMÉTRICA		
LINEA	PUNTO	2021		
		m		
2843	2843007	11.4560		
2843	2843008	6.2056		
2843	2843009	6.1270		
2843	2843010	5.9432		
2843	2843011	6.0629		
2843	2843012	7.4939		
2843	2843014	6.3658		
2843	2843014	6.1438		
2843	2843015	6.5710		
2843	2843016	6.7134		
2843	2843017	6.8525		
2843	2843018	8.4243		
2843	2843019	7.5369		
2843	2843020	7.1956		
2843	2843021	7.2184		
2843	2843022	7.4056		
2843	2843023	7.3747		
2843	2843024	7.5430		
2843	2843025	7.8398		
2843	2843026	7.6866		
2843	844003	1.5786		
2843	2844001	1.6156		
2843	2844002	1.6337		
2843	2844003	1.1531		
2843	2844004	1.0869		
2843	2844005	0.8393		
3843	843030	2.8458		
3843	3843001	2.8643		
3843	3843002	2.8513		
3843	3843003	2.7598		
3843	3843004	2.6983		
3843	3843005	2.5837		
3843	3843006	2.5605		
3843	3843007	2.5065		
3843	3843008	2.5161		
3843	3843009	2.4939		
3843	3843010	2.2716		
3843	3843011	2.4287		
3843	3843012	2.4430		

		COTA ORTOMÉTRICA		
LINEA	PUNTO	2021		
		m		
3843	3843013	2.3809		
3843	3843014	2.3424		
3843	3843015	2.3712		
3843	3843016	2.7250		
3843	3843017	2.5332		
3843	3843018	1.4186		
3843	3843019	1.7829		
3843	3843020	1.7234		
3843	3843021	1.3167		
3843	3843022	3.5742		
3843	3843023	2.5686		
3843	3843004R	2.7170		
3843	3843017R	2.8346		
3843	3843019R	1.9608		
3843	3843023R	2.9930		
4843	843022	4.0629		
4843	4843001	2.9765		
4843	4843002	4.0243		
4843	4843003	3.1076		
4843	4843004	2.9301		
4843	4843005	2.7552		
4843	4843006	3.0496		
4843	4843007	2.6450		
4843	4843008	2.9855		
4843	4843009	2.5186		
4843	4843010	2.8495		
4843	4843011	2.7831		
4843	4843012	2.2563		
4843	4843013	1.5210		
4843	4843014	2.1269		
4843	4843015	2.1001		
4843	4843004R	2.9167		
4843	4843005R 2.7545			
4843	4843010R 3.4249			
5843	843007	2.3511		
5843	5843001	2.0677		
5843	5843002	1.3820		
5843	5843003	1.5200		

		COTA ORTOMÉTRICA		
LINEA	PUNTO	2021		
		m		
5843	5843004	1.1212		
5843	5843005	2.9155		
5843	5843006	2.9333		
5843	5843009	2.6170		
5843	5843010	1.0008		
5843	5843011	1.0098		
5843	5843012	1.3506		
5843	5843013	0.8609		
5843	5843014	1.3908		
5843	5843015	0.8199		
5843	5843016	0.8419		
5843	5843017	1.2577		
5843	5843018	2.5621		
5843	5843019	1.6753		
5843	5843020	1.1197		
5843	5843021	2.5707		
5843	5843022	1.4729		
5843	5843023	1.9443		
5843	5843024	0.9928		
5843	5843025	0.9431		
5843	5843026	1.5094		
5843	5843027	1.4348		
5843	5843028	1.9336		
5843	5843002R	1.8221		
5843	5843004R	1.1605		
5843	5843005R	3.1487		
5843	5843012R	1.2502		
5843	5843014R	1.3971		
5843	5843017R	1.4472		
5843	5843019R	1.1492		
5843	5843020R 1.1718			
5843	5843024R 0.9795			
6843	5843006	2.9333		
6843	6843001	1.0702		
6843	6843002	1.1116		
6843	6843001R	1.0592		

7. ANÁLISIS COMPARATIVO. ESTIMACIÓN DE SUBSIDENCIA

7.1. ANTECEDENTES

7.1.1. NIVELACIÓN DE PRECISIÓN EN EL CANAL DE LA MARGEN IZQUIERDA DEL RÍO EBRO (TORTOSA-DELTEBRE). CHE 2012

Esta nivelación fue realizada por la Sección de Topografía de la Confederación Hidrográfica del Ebro en 2012 a petición de la Oficina de Planificación Hidrológica. Su objeto principal era implantar y observar una línea de nivelación en el canal de la margen izquierda con el propósito de realizar futuras nivelaciones comparativas en años posteriores y además poder comparar con la nivelación realizada en 1927 en dicho canal por el Instituto Geográfico Catastral para la Confederación Sindical Hidrográfica del Ebro, de la que se conservaban tres señales topográficas (CSHE 20, CSHE 12 y CSHE 2). Esta nivelación obtenía desniveles relativos desde CSHE 20 (1845030).

Este itinerario ha quedado incorporado en las líneas IGN-REDNAP 845 y ramal 1845, y en la línea 843 y ramal 3843.

La señalización de 2012 consistió en la colocación de clavos de acero tipo SPIT cada 400 metros aproximadamente y señales principales mediante clavos de bronce cada 5 km.

Estas señales han tenido un nivel de permanencia e integridad elevado, de tal modo que en la reseñalización realizada por el IGN se han considerado válidos 76 clavos, representando un 77,6 % del itinerario, del orden de 2,7 por km. Especialmente los clavos de bronce constituidos en 2012 como señales principales han mantenido su integridad.

La conservación de las señales de 2012 es fundamental para no incluir en el análisis aquellas susceptibles de haber podido tener movimientos independientes del proceso de subsidencia del delta.

Durante de reseñalización, ciertos clavos, como se ha dicho más arriba, aunque presentaban ciertas dudas sobre su integridad o permanencia, han sido también nivelados. Estos clavos son los denominados "radiados" y son nivelados desde una señal próxima IGN sustituta. Estos clavos radiados, identificables por la "R" al final del código del punto, hacen un número de 15 sobre 76.

Figura 9: Clavo de bronce de cabeza semiesférica utilizado para la señalización principal CHE2012

Figura 10: Clavo de acero tipo SPIT utilizado para la señalización general CHE2012

Figura 11: Clavo original CSHE 20 perteneciente a la nivelación de 1927

7.1.2. NIVELACIÓN DE PRECISIÓN EN EL DELTA DEL EBRO. ACUAMED 2012

Esta nivelación también realizada en 2012 fue encargada por ACUAMED a la UTE "Indicadores del delta del Ebro".

Su objetivo, según su descripción, era obtener cota desde el punto geodésico situado en el observatorio de Roquetes (sin reseña en el documento), hasta clavos situados junto a mareógrafos de los puertos de Sant Carles de la Rápita, Deltebre y L'Ampolla, además de ciertos elementos de instrumentación distribuidos uniformemente por todo el delta del Ebro, así como colocación de "bases topográficas" (en la práctica clavos) cada kilómetro de nivelación. Entre los objetivos que se describen no está el de establecer una red para realizar observaciones futuras.

Se realizó un itinerario principal desde el observatorio de Roquetas hasta el mareógrafo de L'Ampolla, y a partir de ese se distribuyeron otros ramales, sin que hubiera un cierre entre

itinerarios. Estos itinerarios han quedado integrados en el resto de líneas y ramales reseñalizados por el IGN.

La densidad de puntos es menor que la nivelación de CHE-2012. Su estado de conservación es peor. Las señales topográficas que durante de la reseñalización por parte del IGN se consideraron válidas en cuanto a su integridad y permanencia fueron 66 clavos, un 62,3 % del total, del orden de 0,6 por km.

Igualmente, durante la reseñalización, ciertos clavos, como se ha dicho más arriba, aunque presentaban ciertas dudas sobre su integridad o permanencia, han sido también nivelados. Estos clavos son los denominados "radiados" y son nivelados desde una señal próxima IGN sustituta. Estos clavos radiados, identificables por la "R" al final del código del punto, hacen un número de 23 sobre 66.

Figura 12: Clavo de acero empotrado en hormigón utilizado para la señalización ACUAMED 2012

Figura 13: Clavo de acero empotrado en solera utilizado para la señalización ACUAMED 2012

7.2. VALORACIÓN NIVELACIONES 2012

CHE 2012 es una única línea, el canal de la margen izquierda, de menor longitud (28,3 km). El estado de conservación de sus señales es mejor.

ACUAMED 2012 son varias líneas y ramales, de mayor longitud (112,6 km). A pesar de su mayor longitud el número de señales aprovechables es menor. Es una malla, pero no dispone de cierre que compense errores acumulados.

La falta de señales en ACUAMED 2012 es especialmente relevante en algunos casos, como en pequeños ramales cercanos a la costa, como el ramal 6843, y en particular el ramal 2844 hacia el Canal Vell. En este solo una señal se conserva en buen estado (2844003; Cv-03), pero además se da la lamentable coincidencia de que la memoria del trabajo de ACUAMED 2012 disponible no recoge su reseña, ni su cota final, como si realmente no hubiera sido nivelado.

	Número de clavos	Número de clavos considerados con presumible integridad y permanencia	Número de clavos considerados con presumible integridad y permanencia (sin incluir radiados)	
CHE 2012	98	76 (77,6 %)	61 (62,3 %)	
ACUAMED 2012	106	66 (62,3 %)	43 (40,6 %)	

Tabla 2: Resumen de señales instaladas durante la campaña 2012.

Finalmente, aunque las dos son nivelaciones de precisión, ninguna de ellas siguió estándares REDNAP de IGN.

Como puede verse, ambas nivelaciones no son comparables entre sí y tampoco, en sentido estricto, son comparables con IGN-2021 al no seguir estándares REDNAP. Sin embargo, sí que es posible analizar el sesgo de la desviación de las nivelaciones 2012 con 2021 en el exterior y en el interior del delta, asumiendo que el exterior del delta ha permanecido inamovible, y que toda diferencia en este último caso entre nivelaciones se debe principalmente a las limitaciones inherentes a la propia técnica de observación, pudiendo influir también otras circunstancias como movimientos locales, dilataciones y alteraciones indetectadas en los clavos.

Estas limitaciones técnicas en la precisión de la medida pueden estimarse como el rango máximo de desviación respecto a IGN-2021 en los puntos situados fuera del delta, asumiendo que no ha habido movimientos verticales en estos puntos. De esta forma, en el caso de CHE-2012 este rango de desviación sería de 35 mm (Tabla 3), siendo la desviación típica de 8 mm, y en el de ACUAMED-2012, estimado de la misma forma, sería de 37 mm y 10 mm respectivamente, con los puntos disponibles. Aunque se trata de una aproximación, podemos entender que este es el orden de magnitud de la precisión real de la medida, lo que da idea de la gran complejidad y limitación para discriminar movimientos en el interior del delta debidos a subsidencia que, a priori, para los casi diez años transcurridos, podrían encontrarse en magnitudes similares según investigaciones precedentes.

PUNTO	Z IGN2021 m	Z CHE_12 (ORIGEN 1845030) m	DIFERENCIAS m	
1845030	6,101	6,101	0,000	
1845027	6,007	6,006	0,002	
1845026	5,953	5,953 5,952		
1845025	5,910	5,908	0,002	
1845024	5,816	5,819	-0,002	
1845023	5,836	5,835	0,002	
1845022	6,450	6,449	0,001	
1845021	5,726	5,724	0,003	
1845019	6,355	6,365	-0,010	
1845018	5,665	5,668	-0,003	
1845017	6,345	6,340	0,006	
1845016	5,508	5,514	-0,005	
1845015	5,550	5,556	-0,005	
1845014	5,495	5,495 5,507		
1845013	6,386	6,379	0,007	
1845011	5,422	5,438	-0,016	
1845010	5,376	5,404	-0,027	
1845008R	5,742	5,751	-0,009	
1845007	6,219	6,213	0,006	
1845006	5,243	5,258	-0,014	
1845004R	5,286	5,295	-0,008	
1845001	5,748	5,758	-0,009	
845049	5,294	5,305	-0,011	
	Desviación máxima			
	Desviación mínima			
Rango desviación			0,035	
	Promedio desviaciones			
		Desviación típica	0,008	

Tabla 3: Desviaciones en CHE 2012 respecto IGN 2021 en puntos fuera del delta (canal margen izquierda). Cotas igualadas a origen 1845030.

PUNTO	Z IGN2021	Z ACUAMED	DIFERENCIAS
1 01110	m	m	m
2843025	7,840	7,847	-0,007
2843019	7,537	7,563	-0,026
2843016	6,713	6,735	-0,022
2843014	6,366	6,394	-0,028
2843012	7,494	7,538	-0,044
2843011	6,063	6,094	-0,031
2843010	5,943 5,971		-0,028
2843007	11,456	11,476	-0,020
2843006	6,274	6,305	-0,031
Desviación máxima			-0,007
Desviación mínima			-0,044
Rango desviación			0,037
	Promedio desviaciones		
Desviación típica			0,010

Tabla 4: Desviaciones en ACUAMED 2012 respecto IGN 2021 en puntos fuera del delta (canal margen derecha).

Por último, como se verá en el análisis posterior, en la nivelación de ACUAMED 2012 se ha detectado un salto o escalón en los desniveles en el entorno de Deltebre que carece de explicación y que se arrastra al resto de puntos. Posiblemente pudo deberse a un error de nivelación motivado por la dificultad del paso de la nivelación de una margen a la otra del río con la suficiente precisión. En el caso de la nivelación IGN 2021 se trató del tramo con mayor dificultad de ejecución y hubo que gestionar un corte parcial del tráfico del puente.

7.3. ANALISIS DE MOVIMIENTOS

Como se apunta arriba, no es posible una comparabilidad directa entre las nivelaciones de 2012 y 2021. Por ello, para el análisis se parte de las siguientes premisas:

- 1) La nivelación IGN-2021 que se integra en REDNAP representa la máxima precisión de cota ortométrica.
- 2) Las nivelaciones de 2012 solo fueron geométricas sin corrección gravitatoria, por lo que la comparación debe realizarse con la nivelación geométrica IGN-2021
- 3) Se considera que los puntos en el exterior del delta, y por tanto no afectados por la dinámica sedimentaria deltaica, no han registrado movimientos altimétricos reales y que toda diferencia relativa entre las nivelaciones de 2012 y 2021 se debe a error de medida.
- 4) Teniendo en cuenta lo anterior, la comparación entre la magnitud de las desviaciones de nivelación geométrica dentro y fuera del delta en el periodo 2012-2021 pueden ser un indicativo del proceso de subsidencia en el delta en el periodo.

El análisis se realiza del siguiente modo:

- 1) Previamente se eliminan dos puntos extremos, considerados fuera de rango o "outlier". Se trata de los puntos 6843001R, cuya diferencia en valor absoluto con IGN-2021 es de 0,527 m, y el 843003, en este caso 0,274 m.
- 2) Se realiza el análisis de forma separada para CHE-2012 y ACUAMED-2012. Para CHE-2012 en su itinerario único por el canal de la margen izquierda. En el caso de ACUAMED-2012 se desagrega por líneas, siguiendo en lo fundamental los itinerarios definidos originalmente en dichos trabajos.
- 3) La nivelación geométrica IGN-2021 se representa en un único plano sobre el que se comparan las desviaciones al mismo de las nivelaciones de 2012. Para poder facilitar esta comparación, uno de los puntos de 2012, o un promedio de ellos, en el exterior del delta, se hace coincidir con el plano de comparación IGN-2021.

El análisis realizado se muestra en los siguientes apartados, así como con más detalle en el Anexo 4.

7.3.1. LÍNEA CHE-2012

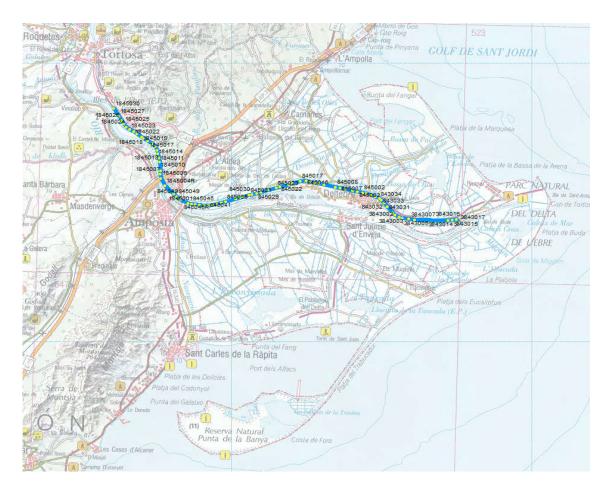


Figura 14: Línea de nivelación CHE 2012

7.3.1.1. ORIGEN TORTOSA (1845030-CSHE20)

Se desplaza la cota del punto CSHE 20 nivelada en 2012 hasta situarla coincidente con la cota de la nueva nivelación de IGN-2021 (punto 1845030), arrastrando el resto de cotas en idéntica magnitud sobre el plano de comparación. CSHE 20 fue el origen de la nivelación de CHE-2012 fuera del delta, y es también uno de los clavos conservados de la nivelación de 1927.

El resultado muestra estabilidad sin tendencias significativas.

Este resultado se muestra en la gráfica de la Figura 15, que se separa en dos partes, la que es externa al delta y la propiamente en el delta y objeto de análisis del proceso de subsidencia. La línea verde representa la línea o plano comparativo formado por las cotas IGN-2021,

viéndose pues la desviación comparativa en metros de las cotas de CHE 2012. No se aprecian tendencias significativas diferenciales de un lado o del otro de la línea de separación delta-territorio continental, lo que sugiere un comportamiento estable.

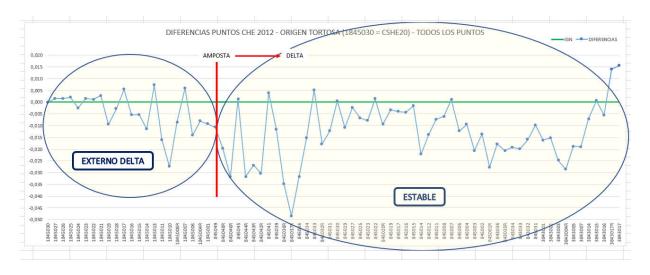


Figura 15: Diferencias puntos CHE 2012. Origen Tortosa.

7.3.1.2. ORIGEN AMPOSTA (845049 – CHE 4024)

Se procede de la misma forma, en este caso utilizando de referencia el punto CHE 4024 situado justo antes de entrar en el delta.

Como no puede ser de otra manera, los resultados son similares, puesto que solo se cambia el punto usado de referencia-origen. Estabilidad sin tendencias significativas.

Figura 16: Diferencias puntos CHE 2012. Origen Amposta.

7.3.1.3. ORIGEN PROMEDIO PUNTOS FUERA DEL DELTA

Para reducir la incertidumbre que puede existir sobre la estabilidad de los puntos usados como referencia, se construye una cota ficticia mediante el promedio de las cotas de todos los puntos situados fuera del delta igualándola con el plano de comparación y se ven las desviaciones al mismo de las cotas de todos los puntos. Se excluyen los puntos radiados, por las dudas en cuanto a su precisión. Los resultados no difieren. Estabilidad sin tendencias significativas.

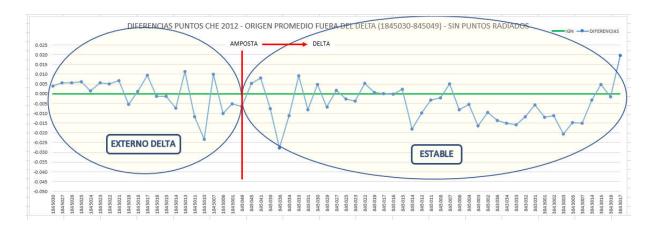


Figura 17: Diferencias puntos CHE 2012. Origen promedio.

7.3.1.4. COMPARACION CON LA NIVELACIÓN DE 1927

Cabe decir que en el caso de los puntos procedentes de la nivelación de 1927, los resultados no difieren significativamente de la nivelación realizada en 2012. En un periodo que se acerca a los 100 años no se aprecian movimientos diferenciales evidentes entre el punto CSHE 20 fuera del delta y los situados en su interior (Tabla 5). Estos clavos situados en el interior del delta son el CSHE 12 y CSHE 2 (Figura 18). En el caso de CSHE 2, como se indica en la memoria de los trabajos de la nivelación CHE-2012, incluyendo fotografía, esta señal estaba situada de forma precaria en el pilar de un antiguo puente sobre el canal y podía verse afectada por la construcción de un camino junto al puente, por lo que después de nivelada fue reubicada en su proximidad, por lo que la ubicación de CSHE 2 ya no se corresponde exactamente con la original, de tal modo que como también se decía en dicha memoria, a partir de entonces, "el clavo CHE 4021 se considerará como punto final para sucesivas observaciones por estar situado en zona más estable. Está situado a unos 400 m del clavo CSHE 2".

Nombre	Punto	Cota en 1927	Cota en 2012	Cota en 2021	Diferencia (1927- 2012) m	Diferencia (2012- 2021) m	Diferencia (1927- 2021) m
CSHE 20	1845030	5,911	5,911	5,911	0,000	0,000	0,000
CSHE 12	845027	3,743	3,789	3,787	0,046	-0,002	0,044
CHE 4021	3843016	-	2,541	2,535	-	-0,006	-
CSHE 2	3843017	2,375	2,328	-	-0,047	-	-

Tabla 5: Diferencias altimétricas de los puntos coincidentes con la nivelación de la CHE de 1927.

Plano de comparación igualado en CSHE 20 (fuera del delta).

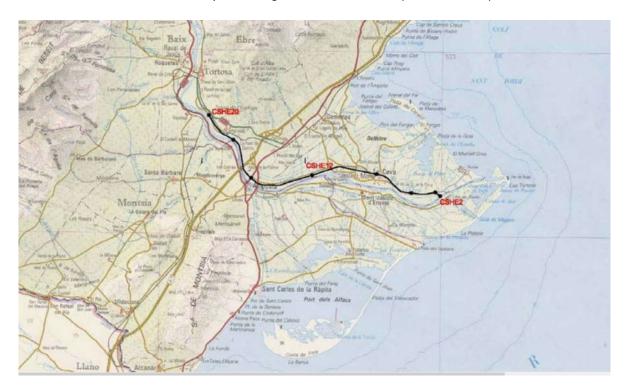


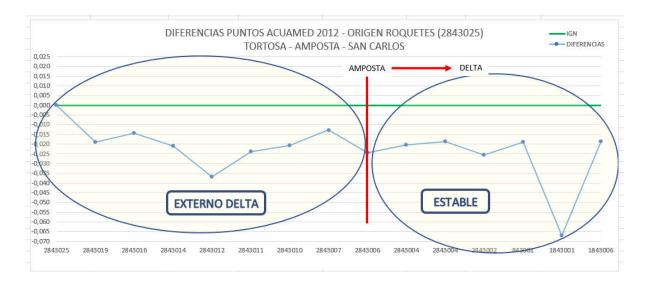
Figura 18: Ubicación de los clavos conservados de la nivelación de 1927.

Fruto de este trabajo se ha localizado otro clavo de las nivelaciones realizadas en los primeros tiempos de la Confederación Hidrográfica del Ebro (1926-31), se trata del clavo CSHE 727 en el canal de la margen derecha en Amposta, pero en los archivos de la Confederación Hidrográfica del Ebro no se ha encontrado documento con las reseñas topográficas de ese punto.

7.3.2. LÍNEAS ACUAMED 2012

7.3.2.1. LÍNEA 1: ROQUETES-TORTOSA-AMPOSTA-SAN CARLOS

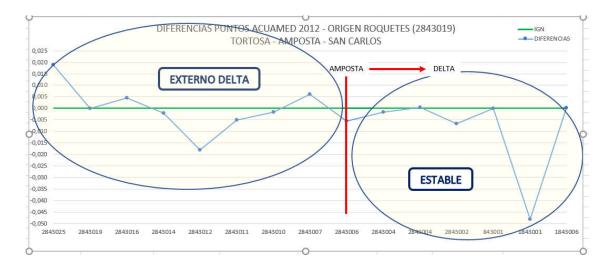
Figura 19: Línea Roquetes-Tortosa-Amposta-San Carlos.


a) Línea Roquetes-Tortosa-Amposta-San Carlos. Origen Roquetes 2843025 – Canal-18.

Se desplaza la cota del punto Canal-18 nivelada en 2012 hasta situarla coincidente con la cota de la nueva nivelación de IGN-2021 (punto 2843025), arrastrando el resto de cotas en idéntica magnitud sobre el plano de comparación.

El resultado se muestra en la gráfica de la Figura 20, que como en los casos anteriores se separa en dos partes, la que es externa al delta y la propiamente en el delta y objeto de análisis del proceso de subsidencia. La línea verde representa la línea o plano comparativo formado por las cotas IGN-2021, viéndose pues la desviación comparativa en metros de las cotas de ACUAMED 2012.

En esta línea el punto 1843001 podría haber sido considerado fuera de rango o "outlier".


Figura 20: Diferencias ACUAMED 2012. Línea Roquetes-Tortosa-Amposta-San Carlos.

Origen Roquetes (2843025)

El resultado muestra estabilidad en las desviaciones, sin que se aprecien tendencias significativas diferenciales a un lado y otro de la línea de separación. No obstante, se trata de una línea en el borde exterior del delta.

b) Línea Roquetes-Tortosa-Amposta-San Carlos. Origen Roquetes: 2843019 – Canal-13.

Se utiliza Canal-13 como punto de referencia origen por estar aparentemente mejor conservado. El resultado no cambia en el análisis diferencial, aunque se ajusta mejor a IGN-2021.

Figura 21: Diferencias ACUAMED 2012. Línea Roquetes-Tortosa-Amposta-San Carlos. Origen Roquetes (2843019)

c) <u>Línea Roquetes-Tortosa-Amposta-San Carlos. Origen Amposta: 2843006 – CSHE</u> 727 = Amp 02

Figura 22: Diferencias ACUAMED 2012. Línea Roquetes-Tortosa-Amposta-San Carlos.

Origen Roquetes (2843006)

El resultado es igual.

7.3.2.2. LÍNEA 2: ROQUETES-TORTOSA-AMPOSTA-LAGUNA TANCADA

Figura 23: Línea Roquetes-Tortosa-Amposta-Laguna Tancada

a) <u>Línea Roquetes-Tortosa-Amposta-Laguna Tancada. Origen Roquetes 2843019 –</u> Canal-13.

Se procede para el análisis como en el caso anterior

Se muestra una estabilidad inicial, pero al avanzar hacia la costa parece apreciarse una tendencia descendente que solo es nítida en los últimos dos puntos. Se corresponden con clavos de puntos radiados, en principio con más dudas sobre su conservación.

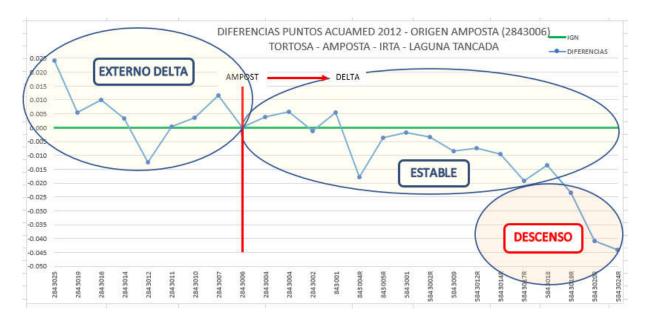
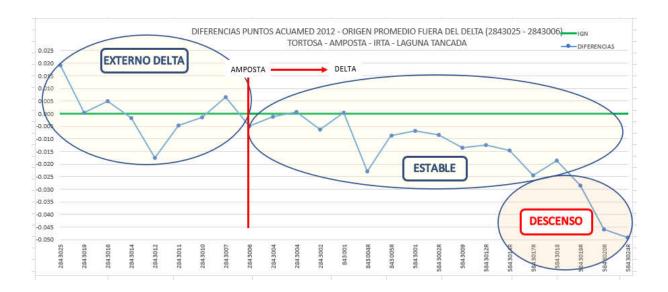


Figura 24: Diferencias ACUAMED 2012. Línea Roquetes-Tortosa-Amposta-Laguna Tancada.

Origen Roquetes (2843019)

b) <u>Línea Roquetes-Tortosa-Amposta-Laguna Tancada. Origen Amposta 2843006 – CSHE 727 – Amp 02.</u>

El resultado es como el anterior.


Figura 25: Diferencias ACUAMED 2012. Línea Roquetes-Tortosa-Amposta-Laguna Tancada.

Origen Amposta (2843006)

c) <u>Línea Roquetes-Tortosa-Amposta-Laguna Tancada. Origen promedio puntos fuera del delta.</u>

El resultado se muestra de manera similar.

Figura 26: Diferencias ACUAMED 2012. Línea Roquetes-Tortosa-Amposta-Laguna Tancada.

Origen promedio puntos fuera del delta.

7.3.2.3. LÍNEA 3: L'AMPOLLA-DELTEBRE-RIUMAR

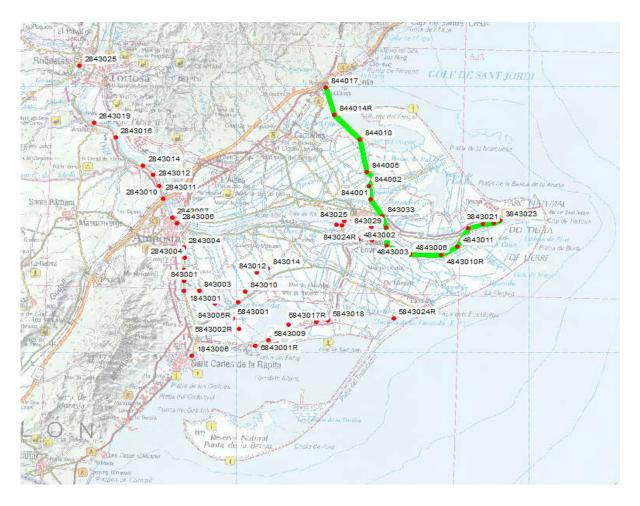


Figura 27: Línea L'Ampolla-Deltebre-Riumar

a) Línea L'Ampolla-Deltebre-Riumar. Origen L'Ampolla: 844017 – Apl-15

El punto escogido de origen se sitúa en el paseo marítimo de L'Ampolla, fuera del delta. Como en casos anteriores se desplaza la cota del punto Apl-15 nivelada en 2012 hasta situarla coincidente con la nueva nivelación IGN-2021 (punto 844017), arrastrando el resto de cotas en idéntica magnitud sobre el plano de comparación.

Se aprecia una estabilidad inicial, posteriormente se registra en los desniveles un escalón o salto pronunciado e inexplicable entre los puntos 844001 y el 843033 y después la nivelación prosigue estable.

Este escalón se aprecia nítidamente en esta línea y también en las que siguen a continuación. Se produce en el entorno de Deltebre y parece tener que ver con la dificultad de arrastrar correctamente la nivelación en el paso del río Ebro, y por ello resulte tan apreciable en los itinerarios que lo cruzan, como se verá en los siguientes. De cualquier forma, probablemente se debe a un error, que se arrastra a los siguientes puntos, y no a movimientos altimétricos reales.

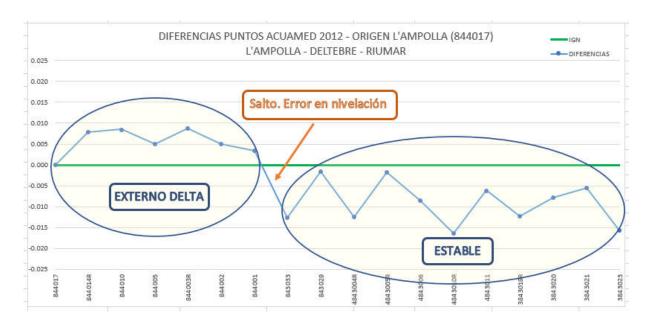


Figura 28: Diferencias ACUAMED 2012. Línea L'Ampolla-Deltebre-Riumar.

Origen L'Ampolla (844017)

7.3.2.4. LÍNEA 4: L'AMPOLLA-DELTEBRE-SAN CARLOS

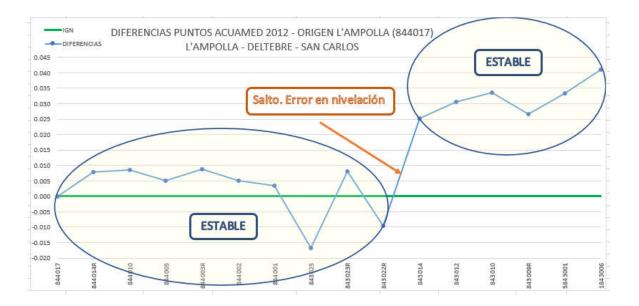


Figura 29: Línea L'Ampolla-Deltebre-San Carlos

a) Línea L'Ampolla-Deltebre-San Carlos. Origen L'Ampolla: 844017 – Apl-15
 Se procede en el análisis de la misma forma. Coincide en la parte inicial con la anterior.

Se registra igualmente una estabilidad inicial, a la que sigue el escalón en el desnivel ya referido a partir de 843025, y especialmente de 843014, para luego proseguir con estabilidad.

Figura 30: Diferencias ACUAMED 2012. Línea L'Ampolla-Deltebre-San Carlos. Origen L'Ampolla (844017)

7.3.2.5. LÍNEA 5: SAN CARLOS-DELTEBRE-RIUMAR

Figura 31: Línea San Carlos-Deltebre-Riumar

El punto escogido de origen se sitúa en el puerto de Sant Carles de la Rápita, fuera del delta.

Coincide parcialmente con la anterior en sentido inverso desde Sant Carles.

De nuevo apreciamos una estabilidad, hasta que aparece el escalón ya referido en 843022R y luego prosigue con una estabilidad parecida.

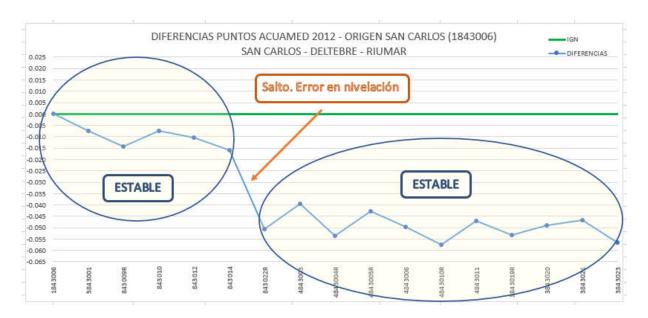


Figura 32: Diferencias ACUAMED 2012. Línea San Carlos-Deltebre-Riumar. Origen San Carlos (1843006)

Ingeniería y nuevas tecnologías.

INFORME EJECUTIVO NIVELACIÓN DE ALTA PRECISIÓN EN EL DELTA DEL EBRO

8. CONCLUSIONES

- 1) A partir de ahora el delta del Ebro cuenta con varias líneas incluidas en la Red Española de Nivelación de Alta Precisión (REDNAP) del Instituto Geográfico Nacional, lo que servirá para futuros análisis. Estas líneas representan la base fundamental para evaluaciones futuras con el mismo estándar de precisión y un avance de gran calado en la monitorización con datos empíricos del fenómeno de la subsidencia.
- 2) El análisis de los datos obtenidos en este estudio revela que no se han podido obtener evidencias absolutamente claras de movimientos altimétricos en el delta del Ebro. Ello se debe a tres factores principales:
 - La complejidad de la detección de movimientos altimétricos reales de carácter milimétrico, cuando estos se encuentran dentro del rango de las limitaciones inherentes a la propia técnica de observación.
 - La no comparabilidad directa entre la nivelación realizada con este trabajo (2021) siguiendo estándares REDNAP, frente a las realizadas en 2012 (CHE y ACUAMED) por no seguir los mismos estándares y perseguir unos objetivos distintos.
 - En relación con ACUAMED-2012, que cubrió la mayor extensión del delta, se conservan en buen estado un número limitado de señales al no tener como objeto original su observación futura. Es una malla sin cierre y se ha detectado un escalón o salto en los desniveles no explicable con movimientos del terreno. A pesar de haber sido un estudio que aportó un alto valor añadido al conocimiento del delta y ser una referencia esencial para la realización del presente trabajo, su información no resulta suficiente para hacer una comparación con el nivel de precisión y certidumbre requerido.
- 3) No obstante, del análisis efectuado se pueden apuntar ciertas consideraciones a ser evaluadas y confirmadas en el futuro:
 - El análisis de las diferencias entre las mediciones de las nivelaciones de 2012 y las de este trabajo en las zonas de interior, fuera del delta, y, por tanto, no

afectadas por la dinámica sedimentaria del delta y presumiblemente inalteradas, indican que existe un grado de incertidumbre en las medidas por las limitaciones inherentes a las técnicas de observación, que se sitúa, respecto a las nivelaciones de 2012, en un rango máximo de 35-37 mm (desviación típica 8-10 mm).

- Parece apuntarse una tendencia general a la estabilidad en el periodo transcurrido 2012-2021 en todas las líneas analizadas en el delta del Ebro, con la excepción en la línea Tortosa-Amposta-IRTA-Laguna Tancada (ramal 5843). Estas tendencias apuntadas deberán confirmarse en el futuro con una nueva medición con un mayor tiempo transcurrido.
- Se confirman los resultados de CHE-2012 en cuanto a las señales que se conservan de la nivelación del canal de la margen izquierda de 1927. En los ya casi cien años transcurridos no se detecta evidencia de movimiento altimétrico en estos puntos.
- Se considera conveniente realizar una línea de nivelación con estándares REDNAP que recorra toda la costa.
- 5) Para llegar a conclusiones fiables para cuantificar la tasa de subsidencia del dleta del Ebro es necesario repetir esta nivelación con estándares REDNAP con una periodicidad aproximada de 10 años.

9. ANEXOS DIGITALES

9.1. "NORMAS PARA LA NIVELACIÓN GEOMÉTRICA DE ALTA PRECISIÓN CON EQUIPOS DIGITALES" QUE ESTABLECE EL ÁREA DE GEODESIA DEL INSTITUTO GEOGRÁFICO NACIONAL PARA LA RED ESPAÑOLA DE NIVELACIÓN DE ALTA PRECISIÓN (REDNAP).

Se adjunta la normativa establecida por el Instituto Geográfico Nacional para REDNAP

9.2. RESEÑAS DE LAS SEÑALES DE NIVELACIÓN (IGN-REDNAP)

Se adjuntan las reseñas oficiales editadas por el IGN correspondientes a los clavos de nivelación con sus respectivas cotas definitivas.

9.3. CERTIFICADOS DE CALIBRACIÓN

Se adjuntan los certificados de calibración de los niveles y miras utilizados en la ejecución del proyecto.

9.4. FICHAS DEL ANÁLISIS COMPARATIVO

Se adjuntan los datos numéricos y gráficos utilizados para realizar los análisis comparativos 2012 – 2021.

9.5. FICHEROS GIS Y KMZ DE LAS LÍNEAS Y RAMALES

Se adjuntan los ficheros GIS y KMZ de líneas y ramales, con la ubicación de todos los puntos, facilitados por el IGN.

9.6. FOTOGRAFÍAS DE LAS SEÑALES

Se adjuntan las fotografías tomadas por el IGN de cada uno de los puntos de nivelación.