

ESTABLECIMIENTO DE UNA METODOLOGÍA PARA EL SEGUIMIENTO DEL POTENCIAL ECOLÓGICO VS. ESTADO TRÓFICO DE LOS EMBALSES DE LA CUENCA DEL EBRO

INFORME FINAL DEL EMBALSE DEL EBRO

ÁREA DE CALIDAD DE AGUAS CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

ESTABLECIMIENTO DE UNA METODOLOGÍA PARA EL SEGUIMIENTO DEL POTENCIAL ECOLÓGICO VS. ESTADO TRÓFICO DE LOS EMBALSES DE LA CUENCA DEL EBRO

PROMOTOR:

DIRECCIÓN DEL PROYECTO:

Vicente Sancho Tello Valls y María José Rodríguez Pérez

EMPRESA CONSULTORA:

Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia Estudi General

EQUIPO DE TRABAJO:

Área de Limnología, dirigida por Dr. Eduardo Vicente Pedrós, Catedrático de Ecología. Director del Estudio.

PRESUPUESTO DE LA ADJUDICACIÓN:

89.000,00€

CONTENIDO:

INFORME INDIVIDUAL DEL EMBALSE DEL EBRO

AÑO DE EJECUCIÓN:

2017

FECHA ENTREGA:

DICIEMBRE 2017

REFERENCIA IMÁGENES PORTADA:

Vista de la presa del embalse del Ebro desde el punto de acceso a la lámina de agua.

CITA DEL DOCUMENTO: Confederación Hidrográfica del Ebro (2017). Establecimiento de una metodología para el seguimiento del potencial ecológico vs. estado trófico de los embalses de la cuenca del Ebro. 212 págs. más anejos. Disponible en PDF en la web: http://www.chebro.es

El presente informe pertenece al Dominio Público en cuanto a los Derechos Patrimoniales recogidos por el Convenio de Berna. Sin embargo, se reconocen los Derechos de los Autores y de la Confederación Hidrográfica del Ebro a preservar la integridad del mismo, las alteraciones o la realización de derivados sin la preceptiva autorización administrativa con fines comerciales, o la cita de la fuente original en cuanto a la infracción por plagio o colusión. A los efectos prevenidos, las autorizaciones para uso no científico del contenido deberán solicitarse a la Confederación Hidrográfica del Ebro.

ÍNDICE

			Página
1.	INTR	ODUCCIÓN	8
2.	DES	CRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE	8
	2.1.	Ámbito geológico y geográfico	8
	2.2.	Características morfométricas e hidrológicas	9
	2.3.	Usos del agua	10
	2.4.	Registro de zonas protegidas	10
3.	TRA	BAJOS REALIZADOS	11
4.	DIAG	SNÓSTICO DE LA SITUACIÓN ACTUAL	12
	4.1.	Características fisicoquímicas de las aguas	12
	4.2.	Hidroquímica del embalse	18
	4.3.	Fitoplancton y concentración de clorofila	19
	4.4.	Zooplancton	24
5.	DIAC	SNÓSTICO DEL GRADO TRÓFICO	27
6.	DIAG	SNÓSTICO DEL POTENCIAL ECOLÓGICO	28
7.	COM	PARATIVA JUNIO-SEPTIEMBRE	33

ANEXO I. REPORTAJE FOTOGRÁFICO

ÍNDICE DE FIGURAS Y TABLAS

ÍNDICE DE FIGURAS CORRESPONDIENTES A GRÁFICOS Y FOTOS

Figura 1. Volumen embalsado y salida durante el año hidrológico 2016-2017	11
Figura 2. Localización de la estación de muestreo en el embalse	12
Figura 3a. Perfiles verticales de temperatura	13
Figura 3b. Perfiles verticales de pH	14
Figura 4a. Perfiles verticales de extinción luminosa	15
Figura 4b. Perfiles verticales de oxígeno disuelto	16
Figura 5a. Perfiles verticales de conductividad	17
Figura 5b. Perfiles verticales de materia orgánica disuelta cromofórica	18
Figura 6. Perfiles verticales de clorofila a	21
Figura 7. Vista de la presa del embalse	36
Figura 8. Vista del punto de acceso al embalse	36
ÍNDICE DE TABLAS	
Tabla 1. Características morfométricas del embalse del Ebro	10
Tabla 2. Concentración de los diferentes nutrientes analizados en las muestras integradas	19
Tabla 3. Estructura y composición de la comunidad de fitoplancton	20
Tabla 4. Composición detallada de la comunidad de fitoplancton en junio	21
Tabla 5. Composición detallada de la comunidad de fitoplancton en septiembre	23
Tabla 6. Estructura y composición de la comunidad de zooplancton	25
Tabla 7. Composición detallada de la comunidad de zooplancton en junio	26
Tabla 8. Composición detallada de la comunidad de zooplancton en septiembre	27
Tabla 9. Parámetros indicadores y rangos de estado trófico.	28
Tabla 10. Diagnóstico del estado trófico del embalse del Ebro	28
Tabla 11. Parámetros y rangos para la determinación del potencial ecológico experimental.	29
Tabla 12. Combinación de los indicadores.	30
Tabla 13. Diagnóstico del potencial ecológico del embalse del Ebro	30
Tabla 14. Valores de referencia propios del tipo (VRt) y límites de cambio de clases de potencial ecológico de los indicadores de los elementos de calidad de embalses (RD 817/2015)	31

Tabla 15. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.	. 32
Tabla 16. Combinación de los indicadores.	. 32
Tabla 17. Diagnóstico del potencial ecológico (PEnorm) del embalse del Ebro en junio	. 33
Tabla 18. Diagnóstico del potencial ecológico (PEnorm) del embalse del Ebro en septiembre.	. 33

1. INTRODUCCIÓN

El presente documento recoge los resultados de los trabajos realizados en el embalse del Ebro durante los muestreos de 2017 tanto en junio como en septiembre y la interpretación de los mismos, a efectos de proporcionar una referencia que facilite la consulta y explotación de la información obtenida.

En general, se recurre a presentaciones gráficas y sintéticas de la información, acompañadas de un texto conciso, lo que permitirá una consulta ágil y rápida del documento.

En el **Anexo I** se presenta un reportaje fotográfico que refleja el estado del embalse durante el periodo estudiado (junio y septiembre de 2017, correspondiente al año hidrológico 2016-2017).

En apartados sucesivos se comentan los siguientes aspectos:

- Resultados del estudio en el embalse (FASE DE CARACTERIZACIÓN) de todos los aspectos tratados (hidrológicos, fisicoquímicos y biológicos), que culminan en el diagnóstico del grado trófico.
- Clasificación del "Potencial Ecológico experimental", tras la aplicación de los indicadores biológicos, propuestos en la MEMORIA DEL ESTUDIO, y fisicoquímicos, propuestos en la Directiva Marco del Agua.
- Clasificación del "Potencial Ecológico normativo", tras la aplicación de los indicadores biológicos y fisicoquímicos propuestos en la Directiva Marco del Agua.
- Análisis comparativo de los muestreos de junio y septiembre.

2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE

2.1. Ámbito geológico y geográfico

El embalse del Ebro está ubicado en las estribaciones orientales de la Cordillera Cantábrica, estrechamente ligado a los bordes del macizo Asturiano (Región del Pisuerga-Carrión), la zona resulta así afectada por los esfuerzos compresivos de la orogenia Alpina, presentando una orientación general de fractura NW-SE; En términos geológicos, el embalse

del Ebro se sitúa sobre materiales de arenas; calizas arenosas; margas y arcillas pertenecientes a la Transición Jurásico-Cretácico, así como calizas; calcarenitas y margas, calizas con Lacazina a techo del Cretácico superior. Aparecen también depósitos aluviales del Cuaternario.

Se sitúa dentro del término municipal de Arroyo, en la provincia de Cantabria. Regula las aguas del río Ebro.

2.2. Características morfométricas e hidrológicas

Se trata de un embalse de grandes dimensiones, de geometría irregular.

La cuenca vertiente al embalse del Ebro tiene una superficie total de 47.494 ha.

El embalse tiene una capacidad total de 540 hm³, que coincide con su capacidad útil. Tiene una profundidad media de 8,60 m, mientras que la profundidad máxima alcanza los 24 m.

En la tabla 1 se presentan las características morfométricas del embalse.

Tabla 1. Características morfométricas del embalse del Ebro

Superficie de la cuenca	466 km²
Capacidad total N.M.N.	540 hm³
Capacidad útil	540 hm³
Aportación media anual	300 hm³
Superficie inundada	6253 ha
Cota máximo embalse normal	839 msnm

Tipo de clasificación: 7. Monomíctico, calcáreo, de zona húmeda, perteneciente a ríos de cabecera y tramo alto, con temperatura media anual menor de 15 °C.

Se trata de un embalse monomíctico. En el momento de los muestreos de junio y septiembre no existe termoclina. El límite inferior de la capa fótica en junio, se encuentra a 8,0 metros de profundidad determinado mediante medidor fotoeléctrico, aunque la estimación mediante el Disco de Secchi era de 7,13 m. Mientras que en septiembre el límite inferior de la capa fótica es de 7 m según el medidor fotoeléctrico y de 5,75 según el Disco de Secchi.

El tiempo de residencia hidráulica media en el embalse del Ebro para el año hidrológico 2016-2017 fue de 12,01 meses.

En la figura 1 se presentan los valores diarios del volumen embalsado y salida media correspondientes al año hidrológico 2016-2017.

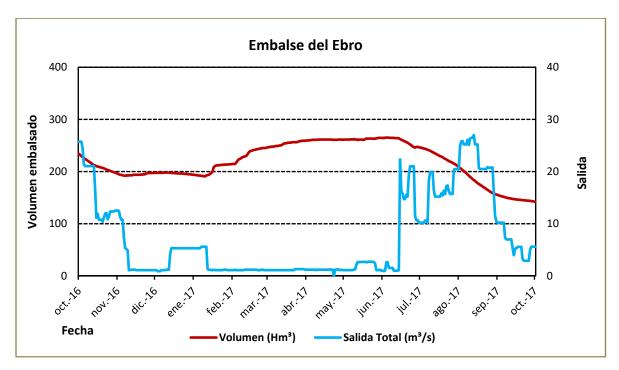


Figura 1. Volumen embalsado y salida durante el año hidrológico 2016-2017.

2.3. Usos del agua

Las aguas del embalse se destinan principalmente al abastecimiento a la población, a los regadíos y al aprovechamiento hidroeléctrico. El uso recreativo también está presente (baño), existiendo un área recreativa en la orilla del embalse. En cambio la navegación no está permitida, ya que se trata de un embalse protegido.

2.4. Registro de zonas protegidas

El embalse del Ebro forma parte del Registro de Zonas Protegidas elaborado por la Confederación Hidrográfica del Ebro, en contestación al artículo 6 de la Directiva Marco del Agua, dentro de las categorías de zonas de extracción de agua para consumo humano, zonas sensibles a nutrientes (zonas sensibles bajo el marco de la directiva 91/271/CEE y zonas de protección de hábitats o especies (LICs ES1300013 "Río y embalse del Ebro (Cantabria)" y ES4120090 "Embalse del Ebro. (Castilla y León)". ZEPAs ES0000252 "Embalse del Ebro. (Cantabria)" y ES0000191 "Embalse del Ebro. (Castilla y León)".

3. TRABAJOS REALIZADOS

Para acometer la caracterización del embalse se ha ubicado una estación de muestreo en las inmediaciones de la presa (ver figura 2). Se han completado dos campañas de muestreo, una el 26 de Junio de 2017 y otra el 22 de septiembre de 2017, en las que se midieron *in situ* los parámetros fisicoquímicos y la transparencia en la columna de agua, se tomó una muestra de agua integrada y otras puntuales para los análisis químicos y se realizaron muestreos de fitoplancton y zooplancton.

Figura 2. Localización de la estación de muestreo en el embalse.

4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL

4.1. Características fisicoquímicas de las aguas

De los resultados obtenidos se desprenden las siguientes apreciaciones:

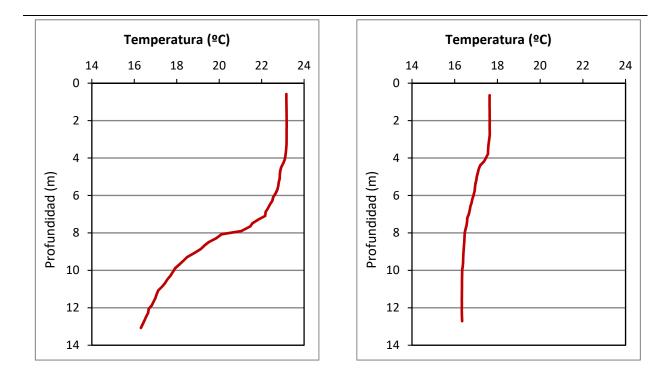


Figura 3a. Perfil vertical de la temperatura en junio a la izquierda y en septiembre a la derecha.

La temperatura del agua en junio oscila entre los 16,31 °C en el fondo y los 23,16 °C -máximo registrado en superficie-. En el momento del muestreo (22 Junio 2017) no existe termoclina. En septiembre tampoco existe termoclina, siendo la temperatura mucho más homogénea a lo largo del perfil, des los 17,63 °C en superficie a los 16,35 °C en el fondo.

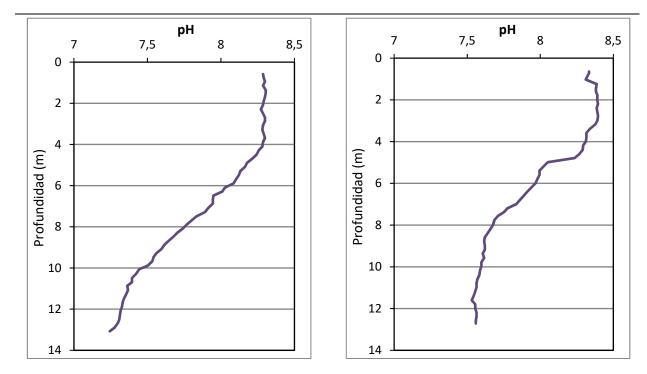
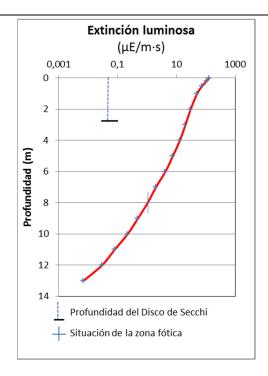



Figura 3b. Perfil vertical del pH en junio a la izquierda y en septiembre a la derecha.

En el muestreo de junio, el pH del agua en superficie es de 8,29, descendiendo progresivamente hasta el valor mínimo en el fondo de 7,28. En septiembre el pH varía entre los 8,33 en superficie y los 7,56 del fondo, presentando un valor máximo de 8,39 entre 1,2 m y los 3 m de profundidad.

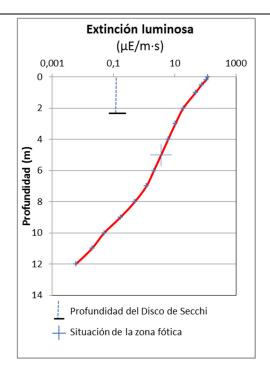
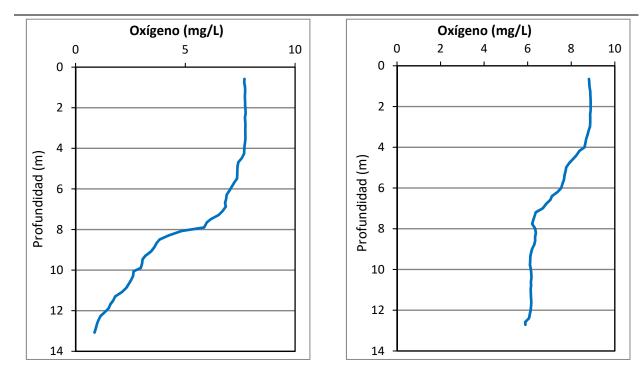


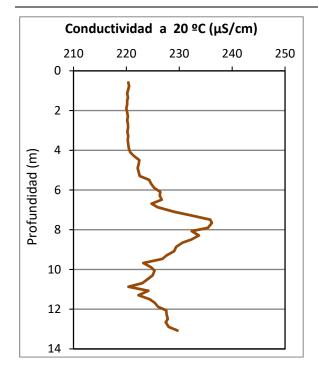
Figura 4a. Perfil vertical de la extinción luminosa en junio a la izquierda y en septiembre a la derecha.

La transparencia del agua registrada en la lectura del disco de Secchi (DS) es de 2,90 m en junio, lo que supone una profundidad de la capa fótica en torno a 7 metros. Sin embargo, la medida mediante medidor fotoeléctrico señala la profundidad de la zona fótica en 8 m, tomando este valor como espesor para la muestra integrada.

En septiembre el valor del disco de Secchi es de 2,3 m, lo cual supondría una zona fótica de 5,75 m. Sin embargo, la medida con el sensor fotoeléctrico señala la profundidad de 7 m como punto de compensación, por lo cual se ha realizado la toma de muestras integrada en 7 m.

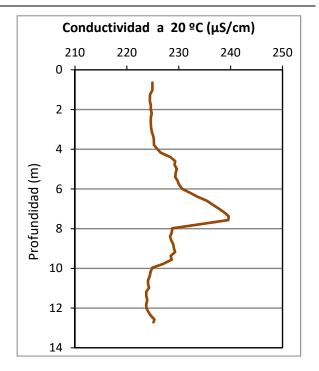
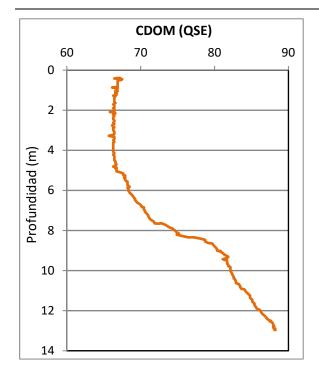
La turbidez media de la zona eufótica fue de 2,28 UAF en junio (integrando 8 m) y de 3,19 UAF en septiembre (integrando 7 m).

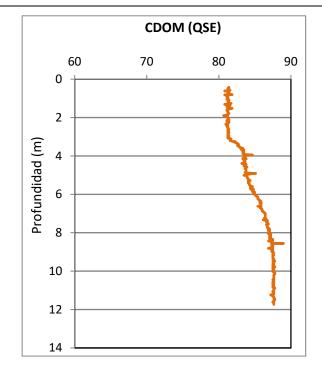



Figura 4b. Perfil vertical del oxígeno disuelto en junio a la izquierda y en septiembre a la derecha.

En junio las condiciones de oxigenación de la columna de agua en la zona epilimnética alcanzan una concentración media de 7,27 mg/L, mientras que en el hipolimnion solo se alcanzan los 4,99 mg/L. En septiembre las condiciones de oxigenación de la columna mejoran y alcanzan en el muestreo una concentración de 8,26 mg/L en el epilimnion y de 6,18 mg/L en el hipolimnion.

En el muestreo de junio se detectaron condiciones anóxicas (<2 mg O_2/L) en los dos últimos metros de profundidad, a partir de los 11,3 m de profundidad, con valor mínimo de 0,86 mg/L en el fondo. Sin embargo, en septiembre no existía zona anóxica.


Figura 5a. Perfil vertical de la conductividad en junio a la izquierda y en septiembre a la derecha.

En junio la conductividad del agua es de 220 μ S/cm en la superficie y de 229 μ S/cm en el fondo. Se observa un aumento paulatino de la conductividad hasta los 7,5 m, donde se encuentra el valor máximo con 235 μ S/cm. En septiembre el perfil de conductividad es muy parecido, observándose un máximo de conductividad a 7,5 m de profundidad con 239 μ S/cm y variando muy poco entre superficie y fondo, 224 μ S/cm.

Figura 5b. Perfil vertical de la materia orgánica disuelta cromofórica en junio a la izquierda y en septiembre a la derecha.

En junio el CDOM del agua es de 67 QSE (equivalentes de sulfato de quinina) en la superficie y de 87 QSE en el fondo. Se observa un aumento paulatino del CDOM desde los 6 m de profundidad hasta el fondo. En septiembre el perfil es más homogéneo variando muy poco entre superficie y fondo, con 81 y 87 QSE respectivamente.

4.2. Hidroquímica del embalse

De los resultados analíticos obtenidos en las campañas de 2017 en las muestras integradas se desprenden los resultados de la tabla 2.

Tabla 2. Concentración de los diferentes nutrientes -analizados en las muestras integradas.

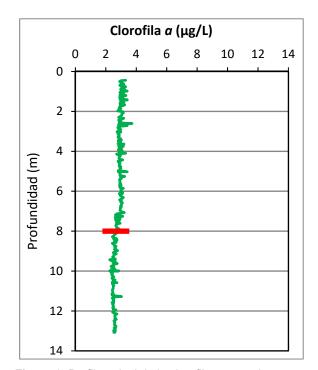
PARÁMETRO	UNIDAD	JUNIO	SEPTIEMBRE
PROFUNDIDAD CAPA FÓTICA	m	8,0	7,0
AMONIO	mg NH₄/L	0,033	<0,01
FÓSFORO TOTAL	μg P/L	13,38	22,46
FÓSFORO SOLUBLE	μg P/L	1,78	2,42
NIO (NO ₃ + NO ₂)	mg N/L	0,33	0,02
NITRÓGENO TOTAL	mg N/L	0,45	0,50
SÍLICE	mg SiO₂/L	1,27	0,86
ALCALINIDAD	meq/L	1,20	1,32

4.3. Fitoplancton y concentración de clorofila

En el análisis cuantitativo de fitoplancton se han identificado un total de 24 especies en junio y 40 en septiembre, distribuidas en los siguientes grupos taxonómicos:

	JUNIO	SEPTIEMBRE
BACILLARIOPHYCEAE	2	4
CHRYSOPHYCEAE	1	-
SYNUROPHYCEAE	1	2
CHLOROPHYTA	8	15
ZYGNEMATOPHYCEAE	1	-
CYANOBACTERIA	5	9
CRYPTOPHYCEAE	5	6
DINOPHYCEAE	1	2
EUGLENOPHYCEAE	-	2

La estructura de la comunidad de fitoplancton se resume en la tabla 3 y la composición detallada en las tablas 4 y 5.


Tabla 3. Estructura y composición de la comunidad de fitoplancton.

PARÁMETRO	UNIDAD	VALOR JUNIO	VALOR SEPTIEMBRE
Nº CÉLULAS TOTALES	nº cél./ml	8035	20837
BIOVOLUMEN TOTAL	µm³/ml	417913	3419233
Diversidad Shannon-W	/iener	2,07	2,33
CLASE PREDOMINANTE (D	ENSIDAD)	Cyanobacteria	Cyanobacteria
Nº células/ml		6676	18756
ESPECIE PREDOMINANTE (I	DENSIDAD)	Merismopedia warmingiana	Aphanizomenon gracile
Nº células/ml		4031	10348
CLASE PREDOMINA (BIOVOLUMEN)	NTE	Cryptophyceae	Cyanobacteria
μm³/ml		127902	2298841
ESPECIE PREDOMINANTE (BIOVOLUMEN)		Woronichinia naegeliana	Dolichospermum planctonicum
μm³/ml		115324	1494732

La concentración de clorofila en la muestra integrada (profundidad señalada en la figura 6 con una línea roja) para la muestra de junio fue de 2,31 µg/L, mientras que en septiembre fue de 9,71 µg/L. Nótese el aumento en la concentración de clorofila *a* en septiembre a lo largo de toda la columna de agua.

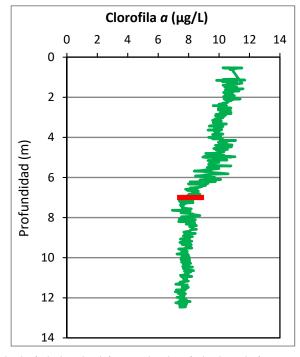


Figura 6. Perfil vertical de la clorofila a para el muestreo de junio (a la izquierda) y septiembre (a la derecha).

La composición de la población fitoplanctónica de la muestra integrada de la zona fótica indicando su abundancia y biovolumen, y la densidad cualitativa de la muestra integrada de fitoplancton del muestreo vertical con red de plancton, se muestran en la tabla 4 con los datos del muestreo de junio y en la tabla 5 con los datos del muestreo de septiembre:

Tabla 4. Composición detallada de la comunidad de fitoplancton en junio.

COD EMB LW	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	µm3/ml	(1 al 5)
	BACILLARIOPHYCEAE/CENTRALES/			
AULAGRAN0	Aulacoseira granulata	24,38	52.743,72	1
CYCLOCEL0	Cyclotella ocellata (Lindavia ocellata)	40,64	9.709,90	
CYCLRADI0	Cyclotella radiosa (=Lindavia radiosa)			1
	BACILLARIOPHYCEAE /PENNALES/			
FRAGCROT0	Fragilaria crotonensis			1
	CHRYSOPHYCEAE			
CHRYCGEN0	Chrysococcus sp.	73,15	4.787,92	
	SYNUROPHYCEAE			
MALLAKRO0	Mallomonas akrokomos	5,40	1.989,90	
	CHLOROPHYTA			
ANKYJUDA0	Ankyra judayi	10,80	610,54	

000 540 114	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	µm3/ml	(1 al 5)
ANKYJUDA0	Ankyra sp.	65,03	2.340,76	
CHLAMGEN0	Chlamydomonas sp.	1,35	242,38	
COELASTR0	Coelastrum astroideum			1
COELPSEU0	Coelastrum pseudomicroporum			2
COENHIND0	Coenochloris hindakii	227,59	7.626,62	
ELAKGELA0	Elakatothrix gelatinosa			1
MONODYBO0	Monoraphidium dybowskii	32,51	842,67	1
OOCYMARS0	Oocystis marssonii			1
PANDMORU0	Pandorina morum			1
PEDIDUPL0	Pediastrum duplex			1
PEDISIMP0	Pediastrum simplex	10,80	1.349,59	
PEDSIBIW2	Pediastrum simplex var. biwaense			1
SPHAPLAN0	Sphaerocystis planctonica	10,80	361,80	1
TETRKOMA0	Tetrastrum komarekii	65,03	4.681,86	
TETRSTAU0	Tetrastrum staurogeniaeforme			1
VOLVAURE0	Volvox aureus			2
	ZYGNEMATOPHYCEAE			
STAULONG0	Staurastrum longipes	2,70	16.588,43	1
	CYANOBACTERIA			
ANABFLOS0	Anabaena flos-aquae (= Dolichospermum flos-aquae)			1
APHAGRAC0	Aphanizomenon gracile			4
APHASGEN0	Aphanocapsa sp.	269,92	141,33	2
DOLIPLAN0	Dolichospermum planctonicum (=Anabaena planctonica)			1
MERIWARM0	Merismopedia warmingiana	4.031,60	2.110,94	
MICRAERU0	Microcystis aeruginosa	48,77	689,46	2
PSEUDGEN0	Pseudanabaena sp.	32,39	635,98	2
WORONAEG0	Woronichinia naegeliana	2.294,30	115.324,03	3
	CRYPTOPHYCEAE			
CRYERREF2	Cryptomonas erosa var. reflexa	6,75	16.129,42	
CRYPMARS0	Cryptomonas marsonii	2,70	1.537,65	
CRYPOVAT0	Cryptomonas ovata	4,05	5.643,25	
CRYPPHAS0	Cryptomonas phaseolus	1,35	279,83	
PLAGLACU0	Plagioselmis (=Rhodomonas) lacustris	772,18	104.312,80	1
	DINOPHYCEAE			
CERAHIRU0	Ceratium hirundinella	1,35	67.232,60	1
	EUGLENOPHYCEAE			
EUGLOXYU0	Euglena oxyuris			1
LEPOTEXT0	Lepocinclis texta			1
	TOTALES BACILLARIOPHYCEAE	65,03	62.453,62	
	TOTALES CHRYSOPHYCEAE	73,15	4.787,92	
	TOTALES SYNUROPHYCEAE	5,40	1.989,90	
	TOTALES CHLOROPHYTA	423,89	18.056,22	
	TOTALES ZYGNEMATOPHYCEAE	2,70	16.588,43	
	TOTALES CYANOBACTERIA	6.676,97	118.901,73	
	TOTALES CRYPTOPHYCEAE	787,03	127.902,95	
	TOTALES DINOPHYCEAE	1,35	67.232,60	
	TOTALES ALGAS	8.035,52	417.913,38	

 Tabla 5. Composición detallada de la comunidad de fitoplancton en septiembre.

COD EMP LW	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	µm3/ml	(1 al 5)
	BACILLARIOPHYCEAE/CENTRALES/			
AULAAMBI0	Aulacoseira ambigua	98,25	88.737,06	1
AULAGRAN0	Aulacoseira granulata	563,05	429.834,70	1
AULGRANG2	Aulacoseira granulata var. angustissima	290,97	117.006,40	1
CYCLOCEL0	Cyclotella ocellata (Lindavia ocellata)	7,56	1.805,67	1
	BACILLARIOPHYCEAE /PENNALES/			
ASTEFORM0	Asterionella formosa			1
	SYNUROPHYCEAE			
MALLAKRO0	Mallomonas akrokomos	11,34	4.178,80	
MALLTONS0	Mallomonas tonsurata	7,56	14.815,75	1
	CHLOROPHYTA			
ANKYJUDA0	Ankyra judayi	26,45	1.495,82	
ANKYJUDA0	Ankyra sp.	7,56	272,06	
CHLAMGEN0	Chlamydomonas sp.	18,89	5.065,21	
COENHIND0	Coenochloris hindakii	7,56	253,26	
DICTPULC0	Dictyosphaerium pulchellum	105,00	3.518,66	1
MONOCIRC0	Monoraphidium circinale	3,78	92,75	
MONODYBO0	Monoraphidium dybowskii	52,90	1.371,17	
MONOGRIF0	Monoraphidium griffithii	3,78	63,32	
OOCYMARS0		3,78	854,75	
	Oocystis marssonii	65,63	16.406,62	1
PEDIDUPLO	Pediastrum duplex	03,03	10.400,02	1
PEDISIMPO	Pediastrum simplex	241,85	23.933,13	ı
PEDSIBIW2	Pediastrum simplex var. biwaense	15,12	569,84	
SCENBICA0	Scenedesmus bicaudatus	60,46	2.026,08	1
SPHAPLANO	Sphaerocystis planctonica	30,23	2.176,61	1
TETRKOMA0	Tetrastrum komarekii	7,56	1.357,32	1
VOLVAURE0	Volvox aureus	7,50	1.337,32	1
401400400	CYANOBACTERIA	10 249 06	402 670 02	1
APHAGRACO	Aphanizomenon gracile	10.348,06 11,34	483.678,82 3.039,13	1
CHROTURG0	Chroococcus turgidus			4
DOLICRAS0	Dolichospermum crassum	137,82	36.080,05	1
DOLILEMM0	Dolichospermum lemmermannii	65,63	3.528,11	1
DOLIPLANO	Dolichospermum planctonicum (=Anabaena planctonica)	2.994,54	1.494.732,02	1
DOLISPIRO	Dolichospermum spiroides	229,69	41.251,52	1
MERIWARM0	Merismopedia warmingiana	30,23	15,83	
MICRAERU0	Microcystis aeruginosa	4.598,78	219.421,13	5
WORONAEG0	Woronichinia naegeliana	340,10	17.095,09	1
	CRYPTOPHYCEAE	20.00	70.050.04	
CRYPEROS0	Cryptomonas erosa	30,23	72.259,81	
CRYPMARS0	Cryptomonas marsonii	30,23	17.221,72	
CRYPOVAT0	Cryptomonas ovata	41,57	57.937,32	
CRYPROST0	Cryptomonas rostratiformis (=Cryptomonas curvata)	3,28	22.431,48	
PLAGLACU0	Plagioselmis (=Rhodomonas) lacustris	298,53	40.327,79	1
PLAGNANN0	Plagioselmis nannoplanctica (=Rhodomonas lacustris var. nannoplanctica)	34,01	1.472,08	
010 0110	DINOPHYCEAE			
CERAHIRU0	Ceratium hirundinella	3,28	163.466,24	1
GYMNHELV0	Gymnodinium sp.	3,28	16.933,57	
O I WHAT ILL VO	EUGLENOPHYCEAE	-,		
EUGLOXYU0	Euglena oxyuris			1
EUGLEGEN0	Euglena sp.	3,78	2.785,87	
PHACTORT0	Phacus tortus	5,.5		1

COD EMB LW	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_EW	FITOPLANCTON	cél./ml	μm3/ml	(1 al 5)
TRACVOLV0	Trachelomonas volvocina	3,78	9.720,85	1
	TOTALES BACILLARIOPHYCEAE	959,83	637.383,82	
	TOTALES SYNUROPHYCEAE	18,89	18.994,55	
	TOTALES CHLOROPHYTA	650,54	59.456,60	
	TOTALES CYANOBACTERIA	18.756,17	2.298.841,70	
	TOTALES CRYPTOPHYCEAE	437,85	211.650,21	
	TOTALES DINOPHYCEAE	6,56	180.399,81	
	TOTALES EUGLENOPHYCEAE	7,56	12.506,72	
	TOTALES ALGAS	20.837,40	3.419.233,41	

Nota: Entre paréntesis se cita el anterior nombre de la especie.

Clases de abundancia	% de presencia
1	<9
2	10-24
3	25-60
4	61-99
5	>99

4.4. Zooplancton

En el análisis de zooplancton de las muestras del embalse del Ebro se han identificado un total de 15 especies en el muestreo de junio y 19 en el muestreo de septiembre, distribuidas en los siguientes grupos taxonómicos:

	JUNIO	SEPTIEMBRE
Cladocera	5	6
Copepoda	3	4
Rotifera	7	9

La estructura y composición de la comunidad de zooplancton se resume en la tabla 6:

Tabla 6. Estructura y composición de la comunidad de zooplancton.

PARÁMETRO	UNIDAD	JUNIO	SEPTIEMBRE	
PROFUNDIDAD	m	7,0	5,0	
DENSIDAD TOTAL	individuos/L	124,42	832,30	
BIOMASA TOTAL	μg/L	121,94	256,34	
Diversidad Shar	non-Wiener	2,65	2,96	
CLASE PREDOMINA	NTE (DENSIDAD)	Rotíferos	Rotíferos	
individu	os/L	68,85	516,15	
ESPECIE PREDOMINA	ESPECIE PREDOMINANTE (DENSIDAD)		Fam. Ciclopidae	
individu	os/L	44,62	233,85	
CLASE PREDOMINA	ANTE (BIOMASA)	Copépodos	Cladóceros	
μg/L	-	89,24	140,77	
ESPECIE PREDOMIN	ANTE (BIOMASA)	Eudiaptomus vulgaris	Ceriodaphnia pulchella	
μg/L	-	81,38	55,38	
COLUMNA AGUA (red ver	_	0 - 12 m	0 - 11 m	
CLADÓC	EROS	14,34 %	18,83 %	

PARÁMETRO UNIDAD		JUNIO	SEPTIEMBRE	
COPÉPO	DDOS	24,34 %	2,66 %	
ROTÍFE	ROS	25,62 %	32,98 %	

La composición detallada de la población zooplanctónica presente en la muestra cuantitativa de zooplancton indicando la densidad y biomasa, y el porcentaje de las especies presentes en la muestra integrada de la red vertical, se muestran en la tabla 7 los datos de junio y en la tabla 8 los datos de septiembre:

 Tabla 7. Composición detallada de la comunidad de zooplancton en junio.

CÓDIGO	COMPOSICIÓN	ABUNDANCIA	BIOMASA	PORCENTAJE
TAXÓN	ZOOPLANCTON	Ind./L	mg/L	(1 al 5)
	CLADÓCEROS			
BOSMLONG0	Bosmina longirostris	1,54	2,00	1
CERIPULC0	Ceriodaphnia pulchella	1,54	1,85	1
DAPHLONG0	Daphnia longispina	1,54	5,85	1
DAPHPULI0	Daphnia pulicaria	1,15	4,38	1
DIAPMONG0	Diaphanosoma mongolianum	4,23	10,58	2
	COPÉPODOS			
ACANAMER0	Acanthocyclops americanus			1
CYCLABYS0	Cyclops abyssorum	0,19	0,48	1
CYCLLACU0	Cyclops of lacustris			1
CYCLVICI0	Cyclops vicinus			1
EUDIVULG0	Eudiaptomus vulgaris	19,23	81,38	2
MACRALBI0	Macrocyclops albidus			2
THERDYBO0	Thermocyclops dybowskii			1
CYCLOPFAM	Fam. Ciclopidae	26,15	7,38	2
	ROTÍFEROS			
ASPLPRIO0	Asplanchna priodonta	0,38	0,29	1
CONOUNIC0	Conochilus unicornis	15,38	1,54	1
KERACOCH0	Keratella cochlearis	4,62	0,23	1
KERCOTEC1	Keratella cochlearis tecta	0,38	0,02	1
POLYDOLI0	Polyarthra dolichoptera	3,08	0,16	2
POLYMAJO0	Polyarthra major	44,62	5,80	2
TRICCYLI0	Trichocerca cylindrica	0,38	0,01	1
	Total Cladóceros	10,00	24,65	20,17 %
	Total Copépodos	45,57	89,24	43,78 %
	Total Rotiferos	68,85	8,04	36,05 %
	Total	124,42	121,94	100 %

Tabla 8. Composición detallada de la comunidad de zooplancton en septiembre.

CÓDIGO	COMPOSICIÓN	ABUNDANCIA	BIOMASA	PORCENTAJE
TAXÓN	ZOOPLANCTON	Ind./L	mg/L	(1 al 5)
	CLADÓCEROS			
BOSMLONG0	Bosmina longirostris	4,62	6,00	1
CERIPULC0	Ceriodaphnia pulchella	46,15	55,38	2
CHYDSPHA0	Chydorus sphaericus			1
DAPHGALE0	Daphnia galeata	10,77	36,62	1
DAPHLONG0	Daphnia longispina	7,69	29,23	
DAPHPULI0	Daphnia pulicaria	1,54	5,85	
DIAPMONG0	Diaphanosoma mongolianum	3,08	7,69	1
	COPÉPODOS			
CYCLABYS0	Cyclops abyssorum	1,15	3,92	1
EUDIVULG0	Eudiaptomus vulgaris	6,15	15,58	1
THERDYBO0	Thermocyclops dybowskii	1,15	3,12	1
CYCLOPFAM	Fam. Ciclopidae	233,85	51,00	3
	ROTÍFEROS			
ASPLPRIO0	Asplanchna priodonta	6,15	4,62	1
CONOUNIC0	Conochilus unicornis	83,08	8,31	1
EUCHDILA0	Euchlanis dilatata	0,77	0,19	
KERACOCH0	Keratella cochlearis	41,54	2,08	1
KERCOTEC1	Keratella cochlearis tecta	69,23	3,46	1
POLYDOLI0	Polyarthra dolichoptera	220,00	11,22	2
POLYEURY0	Polyarthra euriptera	32,31	4,20	1
POLYMAJO0	Polyarthra major	58,46	7,60	1
POMPSULC0	Pompholyx sulcata	4,62	0,28	1
	Total Cladóceros	73,85	140,77	18,84 %
	Total Copépodos	242,30	73,62	36,23 %
	Total Rotiferos	516,15	41,95	44,93 %
	Total	832,30	256,34	100 %

En los siguientes apartados se procederá al diagnóstico del estado trófico y potencial ecológico tanto normativo como experimental. Aunque la Directiva Marco del Agua exige que si solo se realiza un muestreo anual este se haga en el período más desfavorable, es decir, durante los meses de verano cuando en los embalses en estado deficiente se pueden producir floraciones persistentes, aquí calcularemos el estado trófico y potencial ecológico para los dos muestreos realizados. Sin embargo en la memoria general se han utilizado los resultados promedio de los muestreos de julio y septiembre, tal y como dispone la legislación.

5. DIAGNÓSTICO DEL GRADO TRÓFICO

Se han considerado los indicadores especificados en la tabla 9 para los valores medios en el embalse, estableciéndose el estado trófico global del embalse según la metodología descrita en la sección 5 de la MEMORIA DEL ESTUDIO.

Tabla 9. Parámetros indicadores y rangos de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (µg P /L)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L) epilimnion	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cel/ml)	<100	100-1000	1000-10000	10000-100000	>100000
VALOR PROMEDIO FINAL	< 1,8	1,8 - 2,6	2,6 - 3,4	3,4 – 4,2	> 4,2

En la tabla 10 se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final para cada campaña de muestreo.

Tabla 10. Diagnóstico del estado trófico del embalse del Ebro.

MUESTREO	JUNIO		SEPTII	EMBRE
INDICADOR	VALOR	VALOR ESTADO TRÓFICO		ESTADO TRÓFICO
P TOTAL	13,38	Mesotrófico	22,46	Mesotrófico
CLOROFILA a	2,31	Oligotrófico	9,71	Eutrófico
DISCO SECCHI	2,85	Mesotrófico	2,30	Mesotrófico
DENSIDAD ALGAL	8036	Mesotrófico	20836	Eutrófico
ESTADO TRÓFICO FINAL	2,75	MESOTRÓFICO	3,50	EUTRÓFICO

Atendiendo a los criterios seleccionados, en junio tanto el fósforo total (PT) como la densidad algal y la concentración de clorofila *a* clasifican el embalse como mesotrófico, mientras que la transparencia indica que estamos ante un embalse oligotrófico. Combinando todos los indicadores, el estado trófico final para el muestreo de junio del embalse del EBRO ha resultado ser **MESOTRÓFICO**.

En septiembre tanto la concentración de clorofila *a* como la densidad algal clasifican el embalse como eutrófico, mientras que el fósforo total (PT) y la transparencia establecen para el embalse un estado de mesotrofia. Combinando todos los indicadores, el estado trófico final para el muestreo de septiembre del embalse del EBRO ha resultado ser **EUTRÓFICO**.

6. DIAGNÓSTICO DEL POTENCIAL ECOLÓGICO

a) Aproximación experimental (PEexp)

Se han considerado los indicadores especificados en la tabla 11, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado a) de la MEMORIA DEL ESTUDIO.

Tabla 11. Parámetros y rangos para la determinación del potencial ecológico experimental.

Indicador	Elementos	Parámetros	Bueno o	superior	Moderado	Deficiente	Malo
		Densidad algal (cel/ml)	< 10 ³		10 ³ -10 ⁴	10⁴-10⁵	>10 ⁵
		Biomasa algal, Clorofila <i>a</i> (μg/L)	< 2,5		2,5-8	8,0-25	>25
		Biovolumen algal (mm³/L)	<	0,5	0,5-2	2-8	>8
	Fitoplancton	Phytoplankton Assemblage Index (Q)	> 3		2-3	1-2	<1
Biológico		Trophic Index (TI)	< 1	2,79	2,79-3,52	3,52-4,25	>4,25
		Phytoplankton Trophic Index (PTI)	> 3,4		2,6-3,4	1,8-2,6	<1,8
		Phytoplankton Reservoir Trophic Index (PRTI)	< 6,6		6,6-9,4	9,4-12,2	>12,2
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	< 6,6		6,6-9,4	9,4-12,2	>12,2
	INDICADOR BIO	DLÓGICO (1)	< 2,6		2,6 - 3,4	3,4 – 4,2	> 4,2
Indicador	Elementos	Parámetros	Muy bueno	Bueno	Moderado	Deficiente	Malo
	Transparencia	Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7
Fisicoquímico	Oxigenación	$ \begin{array}{ccc} \text{Concentración} & \text{O}_2 & (\text{mg} \\ \text{O}_2\text{/L}) \end{array} $	>8	8-6	6-4	4-2	<2
	Nutrientes	Concentración de PT (µg P/L)	0-4	4-10	10-35	35-100	>100
,	INDICADOR FISICOQUÍMICO (2)		Muy bueno	Bueno	Moderado		
			< 1,6	1,6 – 2,4		> 2,4	

- (1) La valoración del indicador biológico se obtiene asignando la calificación del elemento de menor puntuación (fitoplancton o zooplancton) o peor calidad, según la metodología *one out, all out.*
- (2) La valoración del indicador fisicoquímico se obtiene asignando la calificación del elemento de menor puntuación o peor calidad, según la metodología *one out, all out*.

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico experimental final sigue el esquema de decisiones indicado en la tabla 12:

Tabla 12. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Experimental	
Bueno o superior	Muy bueno	Bueno o superior	
Bueno o superior	Bueno	Bueno o superior	
Bueno o superior	Moderado	Moderado	
Moderado	Indistinto	Moderado	
Deficiente	Indistinto	Deficiente	
Malo	Indistinto	Malo	

En la tabla 13 se incluye el potencial indicado por cada uno de los parámetros e indicadores, así como la catalogación de la masa de agua según el potencial ecológico final.

Tabla 13. Diagnóstico del potencial ecológico del embalse del Ebro.

Indicador	Elementos	Parámetros		JUNIO	SEPTIEMBRE	
iliuicauoi	Liementos	raiamenos	Valor	Potencial	Valor	Potencial
		Densidad algal (cél./ml)	8036	Moderado	20837	Deficiente
		Clorofila a (μg/L)	2,31	Bueno o superior	9,71	Deficiente
		Biovolumen algal (mm³/L)	0,42	Bueno o superior	3,42	Deficiente
Dist/ size	Fitoplancton	Phytoplankton Assemblage Index (Q)	4,64	Bueno o superior	1,14	Deficiente
Biológico		Phytoplankton Trophic Index (PTI)	3,87	Bueno o superior	3,58	Bueno o superior
		Trophic Index (TI)	2,66	Bueno o superior	3,28	Moderado
		Phytoplankton Reservoir Trophic Index (PRTI)	9,72	Deficiente	8,93	Moderado
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	5,85	Bueno o superior	7,40	Moderado
	INDI	CADOR BIOLÓGICO	2,43	BUENO o SUPERIOR	3,43	DEFICIENTE
	Transparencia	Disco de Secchi (m)	2,85	Moderado	2,30	Moderado
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg/L O ₂)	5,35	Moderado	7,28	Bueno
	Nutrientes Concentración de PT (μg/L P)		13,38	Moderado	22,46	Moderado
	INDICADOR FISICOQUÍMICO		3,0	MODERADO	3,0	MODERADO
	POTENCIAL ECOLÓGICO		МС	DERADO	DEFICIENTE	

b) Aproximación normativa (PEnorm)

Se han considerado los indicadores, los valores de referencia y los límites de clase B+/M (Bueno o superior/Moderado), M/D (Moderado/Deficiente) y D/M (Deficiente/Malo), así como sus ratios de calidad ecológica (RCE), especificados en las tablas 14 y 15, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado b) de la MEMORIA DEL ESTUDIO.

Tabla 14. Valores de referencia propios del tipo (VR_t) y límites de cambio de clase de potencial ecológico de los indicadores de los elementos de calidad de embalses (RD 817/2015).

T :	F1	D = = f == = 4 ==	La d'anada a	\/D	B ⁺ /M	M/D	D/M
Tipo	Elemento	Parámetro	Indicador	VRt	(RCE)	(RCE)	(RCE)
		Biomasa	Clorofila a mg/m ³	2,00	0,211	0,14	0,07
Tipo 1		ыотпаѕа	Biovolumen mm³/L	0,36	0,189	0,126	0,063
про т	Fitoplancton	Composición	Índice de Catalán (IGA)	0,10	0,974	0,649	0,325
		Composición	Porcentaje de cianobacterias	0,00	0,908	0,607	0,303
		D:	Clorofila a mg/m³	2,60	0,433	0,287	0,143
-		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 7	Fitoplancton	0	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
T: 0	Fit and an atom	Biomasa	Biovolumen mm³/L	0,76	0,362	0,24	0,12
Tipo 9	Fitoplancton	0	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa ancton Composición	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Tin - 10	Fita a la a ata a		Biovolumen mm³/L	0,76	0,362	0,24	0,12
Tipo 10	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
T: 11		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 11	Fitoplancton	Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composicion	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m ³	2,40	0,195	0,13	0,065
Ti 10	Fit and an atom	Biomasa	Biovolumen mm³/L	0,63	0,175	0,117	0,058
Tipo 12	Fitoplancton	0	Índice de Catalán (IGA)	1,50	0,929	0,619	0,31
		Composición	Porcentaje de cianobacterias	0,10	0,686	0,457	0,229
		Diamass	Clorofila a mg/m ³	2,10	0,304	0,203	0,101
Tine 40	Fitania::t-::	Biomasa	Biovolumen mm ³ /L	0,43	0,261	0,174	0,087
Tipo 13	Fitoplancton	Composición	Índice de Catalán (IGA)	1,10	0,979	0,653	0,326
		Composición	Porcentaje de cianobacterias	0,00	0,931	0,621	0,31

Tabla 15. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.

			RANGOS DEL RCE				
Indicador	Elementos	Parámetros	Bueno o	superior	Moderado	Deficiente	Malo
		Clorofila <i>a</i> (µg/L)	≥ 0,	433	0,432 – 0,287	0,286 – 0,143	< 0,143
Biológico	Fitoplancton	Biovolumen algal (mm³/L)	≥ 0,	362	0,361 – 0,24	0,23 – 0,12	< 0,12
ыоюдісо	Fitopiancton	Índice de Catalán (IGA)	≥ 0,	982	0,981 – 0,655	0,654 – 0,327	< 0,327
		Porcentaje de cianobacterias	≥ 0,	715	0,714 – 0,48	0,47 – 0,24	< 0,24
				superior	Moderado	Deficiente	Malo
//\	DICADOR BIOLÓ	GICO	> (0,6	0,4-0,6	0,2-0,4	< 0,2
			RANGOS DE VALORES				
Indicador	Elementos	Parámetros	Muy bueno	Bueno	Moderado	Deficiente	Malo
	Transparenci a	Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	>8	8-6	6-4	4-2	<2
	Nutrientes	Concentración de PT (µg P/L)	0-4	4-10	10-35	35-100	>100
			Muy bueno	Bueno		Moderado	
INDICADOR FISICOQUÍMICO		< 1,6	1,6 – 2,4		> 2,4		

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico normativo final sigue el esquema de decisiones indicado en la tabla 16.

Tabla 16. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Experimental
Bueno o superior	Muy bueno	Bueno o superior
Bueno o superior	Bueno	Bueno o superior
Bueno o superior	Moderado	Moderado
Moderado	Indistinto	Moderado
Deficiente	Indistinto	Deficiente
Malo	Indistinto	Malo

En las tabla 17 y 18 se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico final (*PEnorm*) tras pasar el filtro del indicador fisicoquímico para los muestreos de junio y septiembre.

Tabla 17. Diagnóstico del potencial ecológico (*PEnorm*) del embalse del Ebro para el muestreo de junio.

Indicador	Elementos	Parámetro	Indicador	Valor	RCE	RC	ET	PEnorm
Biológico Fitop		Biomasa	Clorofila a (µg/L)	2,31	1,12	1,0	9	Bueno o superior
			Biovolumen algal (mm³/L)	0,42	1,82	1,5	51	Bueno o superior
			Media			1,3	30	
	Fitoplancton		Índice de Catalán (IGA)	3,94	0,992	0,8	31	Moderado
		Composición	Porcentaje de cianobacterias	0,86	0,99	0,9	99	Bueno o superior
			Media			0,9	0	
Media global						1,1	10	
INDICADOR BIOLÓGICO			2,0				BUENO O SUPERIOR	
					/-1			DE
Indicador		Elementos	Indicador	Valor			PEnorm	
Fisicoquímico		ransparencia	Disco de Secchi (m)	2,85			Moderado	
		Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	5,35		Moderado		
		lutrientes	Concentración de PT (μg P/L)	13,38			Moderado	
INDICADOR FISICOQUÍMICO			3,0		MODERADO			
POTENCIAL ECOLÓGICO PEnorm			MODERADO					

Tabla 18. Diagnóstico del potencial ecológico (PEnorm) del embalse del Ebro para el muestreo de septiembre.

Indicador	Elementos	Parámetro	Indicador	Valor	RCE	RCE	ΞT	PEnorm	
Biológico Fi			Clorofila a (µg/L)	9,71	0,27	0,3	7	Moderado	
		Biomasa	Biovolumen algal (mm³/L)	3,42	0,22	0,3	7	Bueno o superior	
			Media			0,3	7		
	Fitoplancton		Índice de Catalán (IGA)	28,55	0,930	0,5	7	Deficiente	
		Composición	Porcentaje de cianobacterias	66,73	0,33	0,28	8	Deficiente	
			Media			0,42	2		
	Media global				0,			0,40	
	INDICADOR BIOLÓGICO			4,0				DEFICIENTE	
Indicador Elementos		Indicador	Valor			PEnorm			
Fisicoquímico		Transparencia	Disco de Secchi (m)	2,30		Moderado			
		Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	7,28		Bueno			
		Nutrientes	Concentración de PT (μg P/L)	22,46		Moderado			
INDICADOR FISICOQUÍMICO			3,0			MODERADO			
POTENCIAL ECOLÓGICO PEnorm			DEFICIENTE						

7. COMPARATIVA JUNIO-SEPTIEMBRE

El volumen de agua embalsado no registró variaciones entre los dos muestreos efectuados, puesto que en ambos había embalsado un 30 % de la capacidad del embalse. En el muestreo de junio se registró una baja densidad de fitoplancton, pero poca transparencia y una fuerte reducción del oxígeno hacia el fondo. Con estas condiciones los resultados para el estado trófico daban un embalse mesotrófico y un potencial ecológico tanto normativo como experimental moderado.

En septiembre la columna de agua era más homogénea, aumentando la concentración de oxígeno hacia el fondo, aunque también se registró un aumento de la densidad de fitoplancton y la concentración de PT. Esto puede estar producido por la mezcla de la columna de agua después de la estratificación estival, que rinde disponibles los nutrientes del hipolimnion. Si bien ahora ha mejorado la concentración de oxígeno en el fondo, el aumento de la densidad de fitoplancton ha hecho que empeore el estado del embalse. Así, mientras que en junio los principales limitantes del buen potencial ecológico eran el la poca transparencia, el PT y el bajo oxígeno del fondo, en septiembre además lo es la elevada densidad de fitoplancton, de modo que el potencial ecológico normativo y experimental y el estado trófico ha empeorado, siendo para el muestreo de septiembre deficiente y eutrófico respectivamente.

El estado final obtenido para cada uno de los muestreos y para el valor promedio se muestra resumido en el cuadro siguiente:

	ESTADO TRÓFICO	INDICADOR FISICOQUÍMICO	POTENCIAL ECOLÓGICO (<i>PEexp</i>)	POTENCIAL ECOLÓGICO (<i>PEnorm</i>)	
Junio					
Septiembre					
Promedio					
Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico	
Bueno d	o superior	Moderado	Deficiente	Malo	

ANEXO I. REPORTAJE FOTOGRÁFICO

Figura 7. Vista de la presa del embalse

Figura 8. Vista del punto de acceso