

EXPLOTACIÓN DE LA RED DE SEGUIMIENTO DE EMBALSES EN APLICACIÓN DE LA DIRECTIVA MARCO DEL AGUA EN LA DEMARCACIÓN HIDROGRÁFICA DEL EBRO

INFORME FINAL DEL EMBALSE DE CALANDA

ÁREA DE CALIDAD DE AGUAS CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

2014

FECHA ENTREGA:

DICIEMBRE 2014

EXPLOTACIÓN DE LA RED DE SEGUIMIENTO DE EMBALSES EN APLICACIÓN DE LA DIRECTIVA MARCO DEL AGUA EN LA DEMARCACIÓN HIDROGRÁFICA DEL EBRO

PROMOTOR: CONFEDERACIÓN HIDROGRÁFICA DEL EBRO **SERVICIO:** CONTROL DEL ESTADO ECOLÓGICO **DIRECCIÓN DEL PROYECTO:** Concha Durán Lalaguna y María José Rodríguez Pérez **EMPRESA CONSULTORA:** Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia Estudi General **EQUIPO DE TRABAJO:** Área de Limnología, dirigida por Dr. Eduardo Vicente Pedrós, Catedrático de Ecología. Director del Estudio. PRESUPUESTO DE LA ADJUDICACIÓN: 70.862,60 € **CONTENIDO:** INFORME INDIVIDUAL DEL EMBALSE DE CALANDA AÑO DE EJECUCIÓN:

REFERENCIA IMÁGENES PORTADA:

Vista de la cola del embalse de Calanda desde el punto de toma de muestras.

CITA DEL DOCUMENTO: Confederación Hidrográfica del Ebro (2014). Explotación de la red de seguimiento de embalses en aplicación de la Directiva Marco del Agua en la Demarcación Hidrográfica del Ebro. 20ì Ápágs. más anejos. Disponible en PDF en la web: http://www.chebro.es

El presente informe pertenece al Dominio Público en cuanto a los Derechos Patrimoniales recogidos por el Convenio de Berna. Sin embargo, se reconocen los Derechos de los Autores y de la Confederación Hidrográfica del Ebro a preservar la integridad del mismo, las alteraciones o la realización de derivados sin la preceptiva autorización administrativa con fines comerciales, o la cita de la fuente original en cuanto a la infracción por plagio o colusión. A los efectos prevenidos, las autorizaciones para uso no científico del contenido deberán solicitarse a la Confederación Hidrográfica del Ebro.

ÍNDICE

		Pa	gin
1.	INTR	ODUCCIÓN	7
2.		CRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE	
		Ámbito geológico y geográfico	
	2.2.	Características morfométricas e hidrológicas	. 8
	2.3.	Usos del agua	. 9
	2.4.	Registro de zonas protegidas	. 9
3.	TRAI	BAJOS REALIZADOS	10
4.	DIAG	SNÓSTICO DE LA SITUACIÓN ACTUAL	11
	4.1.	Características fisicoquímicas de las aguas	11
	4.2.	Hidroquímica del embalse	14
		Fitoplancton y concentración de clorofila	
		Zooplancton	
5.	DIAG	SNÓSTICO DEL GRADO TRÓFICO	20
6.	DIAG	SNÓSTICO DEL POTENCIAL ECOLÓGICO	22
1A	NEXO	I. REPORTAJE FOTOGRÁFICO	

ÍNDICE DE FIGURAS Y TABLAS

ÍNDICE DE FIGURAS CORRESPONDIENTES A GRÁFICOS Y FOTOS

Figura 1. Volumen embalsado y salida durante el año hidrológico 2013-2014	9
Figura 2. Localización de la estación de muestreo en el embalse	10
Figura 3. Perfil vertical de la temperatura y pH	11
Figura 4. Perfil vertical de la extinción luminosa y oxígeno disuelto	12
Figura 5. Perfil vertical de la conductividad	13
Figura 6. Perfil vertical de la clorofila a	16
Figura 7. Fotografía de la presa del embalse	28
Figura 8. Fotografía del punto de acceso al embalse	28
ÍNDICE DE TABLAS	
Tabla 1. Características morfométricas del embalse de Calanda	6
Tabla 2. Estructura y composición de la comunidad de fitoplancton.	15
Tabla 3. Composición detallada de la comunidad de fitoplancton	16
Tabla 4. Estructura y composición de la comunidad de zooplancton	19
Tabla 5. Composición detallada de la comunidad de zooplancton	20
Tabla 6. Parámetros indicadores y rangos de estado trófico.	21
Tabla 7. Diagnóstico del estado trófico del embalse de Calanda	21
Tabla 8. Parámetros y rangos para la determinación del potencial ecológico experimental.	22
Tabla 9. Combinación de los indicadores.	23
Tabla 10. Diagnóstico del potencial ecológico del embalse de Calanda	23
Tabla 11. Valores de referencia propios del tipo (VR _t) y límites de cambio de clase de potencial ecológico de los indicadores de los elementos de calidad de embalses (Orden ARM/2656/2008).	24
Tabla 12. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.	
Tabla 13. Combinación de los indicadores.	25
Tabla 14. Diagnóstico del potencial ecológico (PEnorm) del embalse de Calanda.	26

1. INTRODUCCIÓN

El presente documento recoge los resultados de los trabajos realizados en el embalse de Calanda durante los muestreos de 2014 y la interpretación de los mismos, a efectos de proporcionar una referencia que facilite la consulta y explotación de la información obtenida.

En general, se recurre a presentaciones gráficas y sintéticas de la información, acompañadas de un texto conciso, lo que permitirá una consulta ágil y rápida del documento.

En el **Anexo I** se presenta un reportaje fotográfico que refleja el estado del embalse durante el periodo estudiado (verano de 2014, correspondiente al año hidrológico 2013-2014).

En apartados sucesivos se comentan los siguientes aspectos:

- Resultados del estudio en el embalse (FASE DE CARACTERIZACIÓN) de todos los aspectos tratados (hidrológicos, fisicoquímicos y biológicos), que culminan en el diagnóstico del grado trófico.
- Clasificación del "Potencial Ecológico", tras la aplicación de los indicadores biológicos y fisicoquímicos propuestos en la Directiva Marco del Agua.

2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE

2.1. Ámbito geológico y geográfico

La cuenca vertiente al embalse de Calanda está situada en el dominio Ibérico Maestrazgo Catalánides. El área engloba los macizos mesozoicos de la terminación oriental de la Cordillera Ibérica y su enlace con la Cordillera Costero-Catalana. Orográficamente comprende los macizos montañosos del Maestrazgo, Sierra de San Just, puertos de Beceite y Sierra del Boix.

Destacar que los materiales donde se sitúa el embalse de Calanda pertenecen al Triásico, facies Keuper como el Grupo Renales (brechas; calizas dolomíticas y calizas) y el Grupo Ablanquejo (margas y margocalizas). Pertenecientes al Jurásico son la Formación carbonatada de Chelva (con calizas; dolomías; calizas oolíticas y con nódulos de silex) y la Formación Higueruelas (calizas con oncolitos).

El embalse de Calanda se sitúa dentro del término municipal de Calanda, en la provincia de Teruel. Regula las aguas del río Guadalope.

2.2. Características morfométricas e hidrológicas

Se trata de un embalse de geometría alargada y sinuosa.

La cuenca vertiente al embalse de Calanda tiene una superficie total de 266269,73 ha.

Este embalse tiene una capacidad total de 54,32 hm³, que coincide con la capacidad útil. Tiene una profundidad media de 17,4 m, mientras que la profundidad máxima alcanza los 53 m.

En la tabla 1 se presentan las características morfométricas del embalse.

Tabla 1. Características morfométricas del embalse de Calanda

Superficie de la cuenca	2663 km²
Capacidad total N.M.N.	54,32 hm ³
Capacidad útil	54,32 hm ³
Aportación media anual	140 hm³
Superficie inundada	312 ha
Cota máximo embalse normal	440 msnm

Tipo de clasificación: 11. Monomíctico, calcáreo de zonas no húmedas, pertenecientes a ríos de la red principal.

Se trata de un embalse monomíctico de geología calcárea, situado en zona no húmeda de la red principal. No existe termoclina en el momento del muestreo. El límite inferior de la capa fótica se encuentra alrededor de los 10 metros de profundidad cuando se determina mediante el medidor fotoeléctrico, mientras que el valor estimado mediante el Disco de Secchi fue de 6,9 m.

El tiempo de residencia hidráulica media en el embalse de Calanda para el año hidrológico 2013-2014 fue de 3,91 meses.

En la figura 1 se presentan los valores diarios del volumen embalsado y salida media correspondientes al año hidrológico 2013-2014.

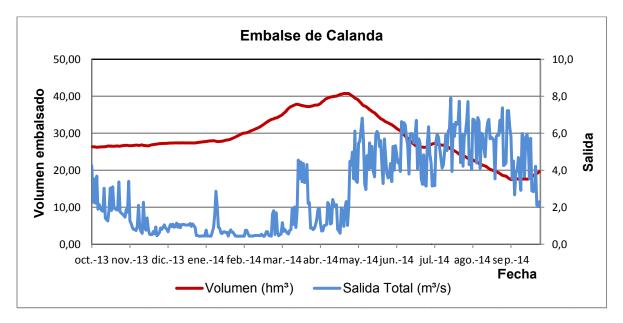


Figura 1. Volumen embalsado y salida durante el año hidrológico 2013-2014.

2.3. Usos del agua

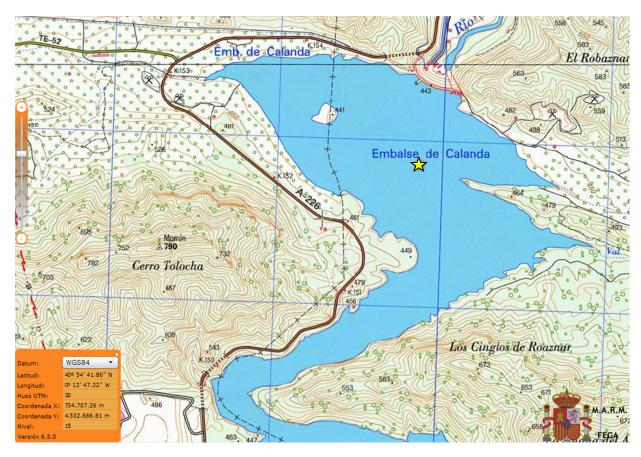
Las aguas del embalse se destinan principalmente a los regadíos. Dentro de los usos recreativos destacan la pesca, ya que sus aguas están declaradas como "trucheras en régimen especial" siendo el embalse coto deportivo de pesca y la navegación (a remo y vela sin restricciones, con limitaciones para la navegación a motor).

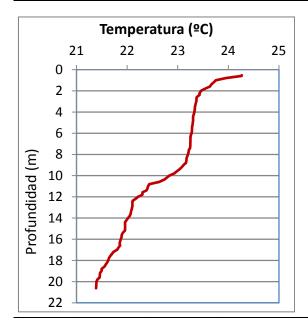
2.4. Registro de zonas protegidas

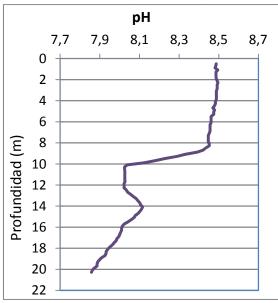
El embalse de Calanda forma parte del Registro de Zonas Protegidas elaborado por la Confederación Hidrográfica del Ebro, en contestación al artículo 6 de la Directiva Marco del Agua, en las categorías de: zonas de extracción de agua para consumo humano, y zonas sensibles a nutrientes (zonas sensibles bajo el marco de la directiva 91/271/CEE).

3. TRABAJOS REALIZADOS

Para acometer la caracterización del embalse se ha ubicado una estación de muestreo en las inmediaciones de la presa (ver figura 2). Se ha completado una campaña de muestreo el 17 de Septiembre de 2014, en la que se midieron *in situ* los parámetros fisicoquímicos y la transparencia en la columna de agua, se tomó una muestra de agua integrada y otras puntuales para los análisis químicos y se realizaron muestreos de fitoplancton y zooplancton.

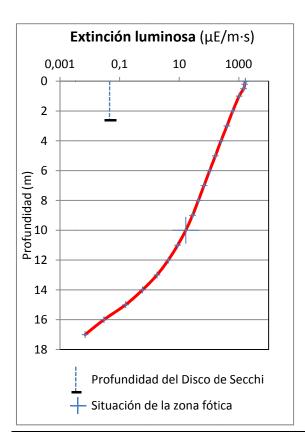



Figura 2. Localización de la estación de muestreo en el embalse.

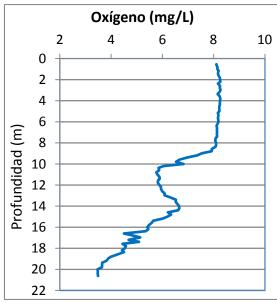

4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL

4.1. Características fisicoquímicas de las aguas

De los resultados obtenidos se desprenden las siguientes apreciaciones:

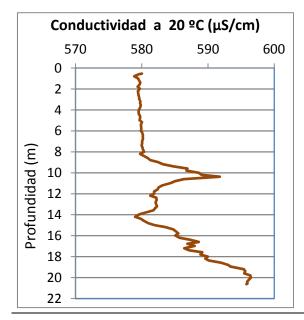

La temperatura del agua oscila entre los 21,39 °C – en el fondo- y los 24,27 °C - máximo registrado en superficie-. En el momento del muestro (Septiembre 2014) no existe termoclina.

El pH del agua en la superficie es de 8,49, máximo epilimnético estival. En el fondo del embalse el valor del pH es de 7,86, mínimo hipolimnético.


Figura 3. Perfil vertical de la temperatura y pH.

La transparencia del agua registrada en la lectura de disco de Secchi es de 2,75 m, lo que supone una profundidad de la capa fótica de 6,9 metros. Mientras que la medición mediante célula fotoeléctrica, indica una profundidad de la capa fótica de 10 m.

La turbidez media de la zona eufótica (muestra integrada de 10 m de profundidad) fue de 3,04 UAF.



Las condiciones de oxigenación de la columna de agua alcanzan en el muestreo una concentración media de $6,56\,$ mg/L. No se han detectado condiciones anóxicas (<2 mg O_2/L).

Figura 4. Perfil vertical de la extinción luminosa y oxígeno disuelto.

La conductividad del agua es de 580 μ S/cm en la superficie y de 596 μ S/cm en el fondo del embalse. Hay un máximo puntual en el metalimnion a 10,4 m de profundidad con un valor de 591 μ S/cm.

Figura 5. Perfil vertical de la conductividad.

4.2. Hidroquímica del embalse

De los resultados analíticos obtenidos en la campaña de 2014 en la muestra integrada, se desprenden las siguientes apreciaciones:

- La concentración de fósforo total (PT) en la muestra integrada (zona fótica) fue de 7,28
 µg P/L.
- La concentración de P soluble resultó ser de 0,98 μg P/L.
- La concentración de nitrógeno total (NT) fue de 0,84 mg N/L.
- La concentración de nitrógeno inorgánico oxidado (nitrato + nitrito, NIO) tomó un valor de 0,75 mg N/L.
- La concentración de amonio (NH₄) fue de 0,016 mg N/L.
- La concentración de sílice tomó un valor de 2,16 mg SiO₂/L
- La alcalinidad en este embalse (zona fótica) fue de 2,44 meg/L.

4.3. Fitoplancton y concentración de clorofila

En el análisis de fitoplancton se han identificado un total de 24 especies, distribuidas en los siguientes grupos taxonómicos:

BACILLARIOPHYCEAE	4
CHRYSOPHYCEAE	3
XANTHOPHYCEAE	1
CHLOROPHYCEAE	11
CYANOBACTERIA	1
CRYPTOPHYCEAE	4

La estructura de la comunidad de fitoplancton se resume en la tabla 2 y la composición detallada en la tabla 3.

Tabla 2. Estructura y composición de la comunidad de fitoplancton.

PARÁMETRO	UNIDAD	VALOR
Nº CÉLULAS TOTALES	nº cel./ml	2887,22
BIOVOLUMEN TOTAL µm³/ml		545391
Diversidad Shannon-Wiener		2,87
CLASE PREDOMINANT	E (DENSIDAD)	Bacillariophyceae
Nº células/ml		1190,87
ESPECIE PREDOMINANTE (DENSIDAD)		Cyclotella ocellata
Nº células/	ml	1174,53
CLASE PREDOMINANTE	(BIOVOLUMEN)	Bacillariophyceae
μm³/ml		462525
ESPECIE PREDOMINANTE (BIOVOLUMEN)		Cyclotella ocellata
μm³/ml		448322

La concentración de clorofila fue de 1,49 μ g/L en la muestra integrada, cuya profundidad se ha señalado en la figura 6 con una línea roja. El perfil vertical realizado mediante fluorimetría muestra un máximo de 1,6 μ g/L a 6 metros de profundidad.

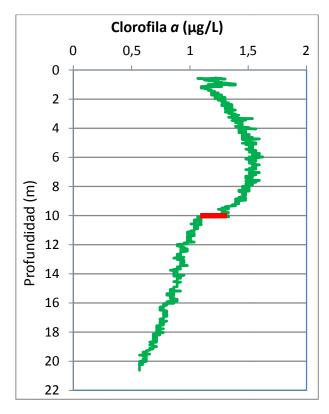


Figura 6. Perfil vertical de la clorofila a.

La composición de la población fitoplanctónica de la muestra integrada de la zona fótica indicando su abundancia y biovolumen, y la densidad cualitativa de la muestra integrada de fitoplancton del muestreo vertical con red de plancton, muestran los resultados de la tabla siguiente:

Tabla 3. Composición detallada de la comunidad de fitoplancton.

	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	μm³/ml	
	BACILLARIOPHYCEAE/CENTRALES/			
CYCLOCEL0	Cyclotella ocellata	1174,53	448322	3
CYCLRADI0	Cyclotella radiosa	5,67	9117	1
	BACILLARIOPHYCEAE /PENNALES/			
ACHNMINU0	Achnanthidium minutissimum (=Achnanthes	4,06	325	1
ACHIVIIIVO	minutissima)	4,00		'
ASTEFORM0	Asterionella formosa	6,61	4761	2
NAVICRYH0	Navicula cryptocephala			1
NITZPALE0	Nitzschia palea			1
NITZRECTO Nitzschia recta				1
	CHRYSOPHYCEAE			
CHRYOGEN0	Chrysochromulina sp.	117,86	3771	
DINOBAVA0	Dinobryon bavaricum			1

	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	μm³/ml	
KEPHPLAN0	Kephyrion planktonicum	60,96	3064	
PSEUPSEU0	Pseudokephyrion pseudospirale	28,45	1430	
	XANTHOPHYCEAE		I	l
TRACSEXA0	Trachydiscus sexangulatus	8,13	1043	
	CHLOROPHYTA		1	•
CLOSACIR0	Closteriopsis acicularis	4,06	665	
COELMICR0	Coelastrum microporum			1
COENHIND0	Coenochloris hindakii	243,85	8171	3
CHLAMGEN0	Chlamydomonas sp.	12,19	1275	1
DIDYCOMA0	Didymocystis comasii	16,26	170	
COELPOLY0	Hariotina polychorda (=Coelastrum	22,67	1484	2
COELFOLTO	polychordum)	22,07	1464	2
KIRCARCU0	Kirchneriella arcuata			2
OOCYMARS0	Oocystis marssonii	3,78	855	
PEDSIBIW2	Pediastrum simplex var. biwaense	15,12	1496	
PEDINGEN0	Pedinomonas sp.	36,58	460	
PLANLAUT0	Planctonema lauterbornii	348,60	11978	
TETRMINI0	Tetraedron minimum	8,13	508	
TETRKOMA0	Tetrastrum komarekii	16,26	195	1
	CYANOBACTERIA			•
APHASGEN0	Aphanocapsa sp.	406,41	213	
CUSPISSA0	Cuspidothrix issatschenkoi			1
	CRYPTOPHYCEAE		1	•
CRYPEROS0	Cryptomonas erosa	2,83	6774	
CRYPMARS0	Cryptomonas marsonii	2,83	1615	
CRYPOVAT0	Cryptomonas ovata			1
CRYPTGEN0	Cryptomonas sp.			2
PLAGLACU0	Plagioselmis (=Rhodomonas) lacustris	239,78	31740	
PLAGNANN0	Plagioselmis nannoplanctica (=Rhodomonas	101,60	5958	
FLAGNANNO	lacustris var. nannoplanctica)	101,00	3956	
	DINOPHYCEAE			
CERAHIRU0	Ceratium hirundinella			1
	EUGLENOPHYCEAE			
EUGLAGIL0	Euglena agilis			1

	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	μm³/ml	
	TOTALES BACILLARIOPHYCEAE	1190,87	462525	
	TOTALES CHRYSOPHYCEAE	207,27	8266	
	TOTALES XANTHOPHYCEAE	8,13	1043	
	TOTALES CHLOROPHYTA	727,49	27257	
	TOTALES CYANOBACTERIA	406,41	213	
	TOTALES CRYPTOPHYCEAE	347,05	46087	
	TOTALES ALGAS	2887,22	545391	

Nota: Entre paréntesis se cita el anterior nombre de la especie.

Clases de abundancia	% de presencia
1	<9
2	10-24
3	25-60
4	61-99
5	>99

4.4. Zooplancton

En el análisis de zooplancton de las muestras del embalse de Calanda se han identificado un total de 11 especies, distribuidas en los siguientes grupos taxonómicos:

- 4 Cladocera
- 2 Copepoda
- 4 Rotifera
- 1 Mollusca

La estructura y composición de la comunidad de zooplancton se resume en la tabla 4:

Tabla 4. Estructura y composición de la comunidad de zooplancton.

PARÁMETRO	UNIDAD	VALOR			
PROFUNDIDAD	m	8,0			
DENSIDAD TOTAL	individuos/L	154,04			
BIOMASA TOTAL	μg/L		121,89		
Diversidad Sha	nnon-Wiener		2,50		
CLASE PREDOMINA	ANTE (DENSIDAD)		Rotíferos		
individ	uos/L	89,62			
ESPECIE PREDOMINANTE (DENSIDAD)			Polyarthra dolichoptera		
individuos/L			70,77		
CLASE PREDOMIN	ANTE (BIOMASA)	Copépodos			
μg/	L	56,88			
ESPECIE PREDOMII	NANTE (BIOMASA)	Copidodiaptomus numidicus			
μg/L		54,58			
COLUMNA AGUA INTEGRADA (red vertical)		0 – 20 m			
CLADÓCEROS: 29,56 %	6 COPÉPODOS: 47	7,49 % ROTÍFEROS : 22,95 %			

La composición detallada de la población zooplanctónica presente en la muestra cuantitativa de zooplancton indicando la densidad y biomasa, y el porcentaje de las especies presentes en la muestra integrada de la red vertical, se muestran en la tabla 5:

Tabla 5. Composición detallada de la comunidad de zooplancton.

CÓDIGO	COMPOSICIÓN	ABUNDANCIA	BIOMASA	PORCENTAJE
TAXÓN	ZOOPLANCTON	Ind./L	mg/L	%
	CLADÓCEROS			
BOSMLONG0	Bosmina longirostris	0,58	0,75	3,96
CERIPULC0	Ceriodaphnia pulchella	0,58	0,69	1,58
DAPHCUCU0	Daphnia cucullata	0,96	2,88	1,58
DAPHLONG0	Daphnia longispina	-	ı	0,20
DAPHPULI0	Daphnia pulicaria	-	ı	0,79
DIAPMONG0	Diaphanosoma mongolianum	20,00	50,00	21,37
	Leydigia quadrangularis	-	-	0,08
	COPÉPODOS			
COPINUMI0	Copidodiaptomus numidicus	20,77	54,58	20,58
CYCLOPFAM	Ciclópido	10,77	2,31	26,91
	ROTÍFEROS			
ASCOOVAL0	Ascomorpha ovalis	-	ı	0,40
ASPLPRIO0	Asplanchna priodonta	0,38	0,29	0,79
BRACDIMI0	Brachionus dimidiatus	1,54	0,05	0,40
POLYDOLI0	Polyarthra dolichoptera	70,77	3,61	3,96
POLYMAJO0	Polyarthra major	16,92	2,20	7,12
SYNCHGEN0	Synchaeta sp	-	-	0,79
	OTROS			
DREIPOLY0	<i>Dreissena polymorpha</i> (Mejillón cebra)	10,77	4,52	9,50
	Total Cladóceros	22,12	54,33	29,56
	Total Copépodos	31,54	56,88	47,49
	Total Rotíferos	89,62	6,15	22,95
	Total Otros	10,77	4,52	9,50
	Total	154,04	121,89	100,00

5. DIAGNÓSTICO DEL GRADO TRÓFICO

Se han considerando los indicadores especificados en la tabla 6, estableciéndose el estado trófico global del embalse según la metodología descrita en la sección 5 de la MEMORIA DEL ESTUDIO.

Tabla 6. Parámetros indicadores y rangos de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (µg P/L)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L) epilimnion	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cel./ml)	<100	100-1000	1000-10000	10000-100000	>100000
VALOR PROMEDIO FINAL	> 4,2	3,4 - 4,2	2,6 - 3,4	1,8 - 2,6	< 1,8

En la tabla **7** se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final.

Tabla 7. Diagnóstico del estado trófico del embalse de Calanda.

INDICADOR	VALOR	ESTADO TRÓFICO
P TOTAL	7,28	Oligotrófico
CLOROFILA a	1,49	Oligotrófico
DISCO SECCHI (DS)	2,75	Mesotrófico
DENSIDAD ALGAL	2887	Mesotrófico
ESTADO TRÓFICO FINAL	3,50	OLIGOTRÓFICO

Atendiendo a los criterios seleccionados, el fósforo total (PT) y la concentración de clorofila a, clasifican el embalse como oligotrófico. Mientras que la transparencia (DS) y la densidad algal establecen para el embalse un estado de mesotrofia. Combinando todos los indicadores el estado trófico final para el embalse de CALANDA ha resultado ser **OLIGOTRÓFICO**.

6. DIAGNÓSTICO DEL POTENCIAL ECOLÓGICO

a) Aproximación experimental (PEexp)

Se han considerando los indicadores especificados en la tabla 8, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado a) de la MEMORIA DEL ESTUDIO.

Tabla 8. Parámetros y rangos para la determinación del potencial ecológico experimental.

Indicador	Elementos	Parámetros	Máximo	Bueno	Moderado	Deficiente	Malo
		Densidad algal (cel./ml)	<100	100-10 ³	10 ³ -10 ⁴	10 ⁴ -10 ⁵	>10 ⁵
		Biomasa algal, Clorofila <i>a</i> (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
		Biovolumen algal (mm³/L)	<0,1	0,1-0,5	0,5-2	2-8	>8
	Fitoplancton	Phytoplankton Assemblage Index (Q)	>4	3-4	2-3	1-2	<1
Biológico		Trophic Index (TI)	<2,06	2,06-2,79	2,79-3,52	3,52-4,25	>4,25
		Phytoplankton Trophic Index (PTI)	>4,2	3,4-4,2	2,6-3,4	1,8-2,6	<1,8
		Phytoplankton Reservoir Trophic Index (PRTI)	<3,8	3,8-6,6	6,6-9,4	9,4-12,2	>12,2
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	<3,8	3,8-6,6	6,6-9,4	9,4-12,2	>12,2
	INDICADOR B	IOLÓGICO (1)	> 4, 2	3, 4 -4, 2	2,6-3,4	1, 8 -2, 6	< 1, 8
	Transparencia	Profundidad Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7
Fisicoquímico	Oxigenación	Concentración O ₂ (mg O ₂ /L)	>8	8-6	6-4	4-2	<2
	Nutrientes Concentración de PT (µg P/L)		0-4	4-10	10-35	35-100	>100
	INDICADOR FISICOQUÍMICO (2)			AS FUN	NO AS FUN		
,				3,4-4,2	<3,4		

- (1) La valoración del indicador biológico se obtiene asignando la calificación del elemento de menor puntuación (fitoplancton o zooplancton) o peor calidad, según la metodología *one out, all out*.
- (2) La valoración del indicador fisicoquímico se obtiene realizando la media de las puntaciones obtenidas para los distintos elementos. Si la media de los 3 elementos es igual o superior a 4,2, se considera que se cumplen las condiciones fisicoquímicas propias del máximo potencial ecológico (MPE). Si se alcanzan o superan los 3,4 puntos, se considera que las condiciones fisicoquímicas aseguran el funcionamiento del ecosistema (AS.FUN). Si no se alcanzan los 3 puntos, el indicador fisicoquímico no asegura el funcionamiento del ecosistema (NO AS.FUN).

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico experimental final sigue el esquema de decisiones indicado en la tabla 9:

Tabla 9. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Experimental
Máximo	MPE	Máximo
Máximo	As Fun	Bueno
Máximo	No As Fun	Moderado
Bueno	MPE	Bueno
Bueno	As Fun	Bueno
Bueno	No As Fun	Moderado
Moderado	Indistinto	Moderado
Deficiente	Indistinto	Deficiente
Malo	Indistinto	Malo

En la tabla 10 se incluye el potencial indicado por cada uno de los parámetros e indicadores, así como la catalogación de la masa de agua según el potencial ecológico final.

Tabla 10. Diagnóstico del potencial ecológico del embalse de Calanda.

Indicador	Elementos	Parámetros	Valor	Potencial
		Densidad algal (cel./ml)	2887	Moderado
		Clorofila a (μg/L)	1,49	Bueno
		Biovolumen algal (mm³/L)	0,55	Moderado
B: 1/ :	Fitoplancton	Phytoplankton Assemblage Index (Q)	4,76	Máximo
Biológico		Phytoplankton Trophic Index (PTI)	3,99	Bueno
		Trophic Index (TI)	2,04	Máximo
		Phytoplankton Reservoir Trophic Index (PRTI)	6,93	Moderado
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	7,77	Moderado
INDICADOR BIOLÓGICO				MODERADO
	Transparencia	Disco de Secchi (m)	2,75	Moderado
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	6,56	Bueno
	Nutrientes	Concentración de PT (µg P/L)	7,28	Bueno
INDICADOR FISICOQUÍMICO				AS FUN
POTENCIAL ECOLÓGICO PEexp				DERADO

b) Aproximación normativa (PEnorm)

Se han considerado los indicadores, los valores de referencia y los límites de clase B⁺/M (Bueno o superior/Moderado), M/D (Moderado/Deficiente) y D/M (Deficiente/Malo), así como sus ratios de calidad ecológica (RCE), especificados en las tablas 11 y 12, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado b) de la MEMORIA DEL ESTUDIO.

Tabla 11. Valores de referencia propios del tipo (VR_t) y límites de cambio de clase de potencial ecológico (B/M, Bueno-Moderado) de los indicadores de los elementos de calidad de embalses (Orden ARM/2656/2008).

The Floor		D	lo dia adam	V/D	B⁺/M	M/D	D/M
Tipo	Elemento	Parámetro	Indicador	VR _t	(RCE)	(RCE)	(RCE)
		D:	Clorofila a mg/m ³	2,00	0,211	0,14	0,07
Tipo 1	Fitoplancton	Biomasa	Biovolumen mm ³ /L	0,36	0,189	0,126	0,063
Проп	i itopiancton	Composición	Índice de Catalán (IGA)	0,10	0,974	0,649	0,325
		Composicion	Porcentaje de cianobacterias	0,00	0,908	0,607	0,303
		Biomasa	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Tine 7	Fitanlanatan	ыотпаѕа	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 7	Fitoplancton	Camanasiaién	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Diamaga	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Tine 0	Cita alamata a	Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 9	Fitoplancton	Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa n Composición	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Ti 10	Fit l t		Biovolumen mm³/L	0,76	0,362	0,24	0,12
Tipo 10	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Tin - 44	Fit and an atom		Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 11	Fitoplancton	Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composition	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Б.	Clorofila a mg/m ³	2,40	0,195	0,13	0,065
Ti 10	Fit l t	Biomasa	Biovolumen mm³/L	0,63	0,175	0,117	0,058
Tipo 12	Tipo 12 Fitoplancton	Composición	Índice de Catalán (IGA)	1,50	0,929	0,619	0,31
			Porcentaje de cianobacterias	0,10	0,686	0,457	0,229
		Biomasa	Clorofila a mg/m ³	2,10	0,304	0,203	0,101
Ti 40	Fit l t		Biovolumen mm ³ /L	0,43	0,261	0,174	0,087
Tipo 13	Fitoplancton	Composición	Índice de Catalán (IGA)	1,10	0,979	0,653	0,326
			Porcentaje de cianobacterias	0,00	0,931	0,621	0,31

Tabla 12. Parámetros, rangos del RECT y valores para la determinación del potencial ecológico normativo.

			RANGOS DEL RCE					
Indicador	Elementos	Parámetros	Máximo	Bueno	Moderado	Deficiente	Malo	
		Clorofila a (µg/L)	≥ 1	0,99 - 0,433	0,432 - 0,287	0,286 - 0,143	< 0,143	
Dial4 size	Fitanlanatan	Biovolumen algal (mm³/L)	≥ 1	0,99 - 0,362	0,361 – 0,24	0,23 – 0,12	< 0,12	
Biológico	Fitoplancton	Índice de Catalán (IGA)	≥ 1	0,99 - 0,982	0,981 – 0,655	0,654 - 0,327	< 0,327	
		Porcentaje de cianobacterias	≥ 1	0,99 – 0,715	0,714 - 0,48	0,47 – 0,24	< 0,24	
		Máximo	Bueno	Moderado	Deficiente	Malo		
INDICADOR BIOLÓGICO			> 0,8	0,6-0,8	0,4-0,6	0,2-0,4	< 0,2	
			•					
				RA	NGOS DE VALO	RES		
Indicador	Elementos	Parámetros	Máximo	Bueno	Moderado	Deficiente	Malo	
	Transparencia	Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7	
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	>8	8-6	6-4	4-2	<2	
	Nutrientes	Concentración de PT (µg P/L)	0-4	4-10	10-35	35-100	>100	
			MPE	AS FUN	NO AS FUN			
INDICADOR FISICOQUÍMICO		>4,2	3,4-4,2		<3,4			

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico normativo final sigue el esquema de decisiones indicado en la tabla 13:

Tabla 13. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Normativo
Máximo	MPE	Máximo
Máximo	As Fun	Bueno
Máximo	No As Fun	Moderado
Bueno	MPE	Bueno
Bueno	As Fun	Bueno
Bueno	No As Fun	Moderado
Moderado	Indistinto	Moderado
Deficiente	Indistinto	Deficiente
Malo	Indistinto	Malo

En la tabla **14** se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico final (*PEnorm*) tras pasar el filtro del indicador fisicoquímico.

Tabla 14. Diagnóstico del potencial ecológico (PEnorm) del embalse de Calanda.

Indicador	Elementos	Parámetro	Indicador	Valor	RCE	RCET	PEnorm	
		Biomasa	Clorofila a (µg/L)	1,49	1,75	1,53	Máximo	
			Biovolumen algal (mm³/L)	0,55	1,39	1,25	Máximo	
			Media			1,39		
Biológico	Fitoplancton		Índice de Catalán (IGA)	0,13	1,001	1,03	Máximo	
		Composición	Porcentaje de cianobacterias	0,00	1,00	1,00	Máximo	
			Media			1,01		
	Media global					1,20		
	INDICADOR BIOLÓGICO				1,20		MÁXIMO	
Indica	ador	Elementos	Indicador	,	Valor		PEnorm	
	Т	ransparencia	Disco de Secchi (m)		2,75		Moderado	
Fisicoquímico	, ()xigenación	O ₂ hipolimnética (mg O ₂ /L)	6,56			Bueno	
	Nutrientes Concentración de PT (µg P/L)				7,28		Bueno	
INDICADOR FISICOQUÍMICO					3,7		AS FUN	
POTENCIAL ECOLÓGICO PEnorm					E	BUENO		

ANEXO I. REPORTAJE FOTOGRÁFICO

Figura 7. Vista de la presa del embalse

Figura 8. Vista del punto de acceso al embalse