

EXPLOTACIÓN DE LA RED DE SEGUIMIENTO DE EMBALSES EN APLICACIÓN DE LA DIRECTIVA MARCO DEL AGUA EN LA DEMARCACIÓN HIDROGRÁFICA DEL EBRO

INFORME FINAL DEL EMBALSE DE MEQUINENZA

ÁREA DE CALIDAD DE AGUAS
CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

EXPLOTACIÓN DE LA RED DE SEGUIMIENTO DE EMBALSES EN APLICACIÓN DE LA DIRECTIVA MARCO DEL AGUA EN LA DEMARCACIÓN HIDROGRÁFICA DEL EBRO

PROMOTOR: | Gobberno | Ministerio | De Agricultura, Alimentación | Hidrografica | Del España | Ministerio | Confederación | Hidrografica | Del España | Ministerio | De Agricultura, Alimentación | Hidrografica | Del España | D

CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

SERVICIO:

CONTROL DEL ESTADO ECOLÓGICO

DIRECCIÓN DEL PROYECTO:

Concha Durán Lalaguna y María José Rodríguez Pérez

EMPRESA CONSULTORA:

Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia Estudi General

EQUIPO DE TRABAJO:

Área de Limnología, dirigida por Dr. Eduardo Vicente Pedrós, Catedrático de Ecología. Director del Estudio.

PRESUPUESTO DE LA ADJUDICACIÓN:

70.862,60 €

CONTENIDO:

INFORME INDIVIDUAL DEL EMBALSE DE MEQUINENZA

AÑO DE EJECUCIÓN:

2014

FECHA ENTREGA:

DICIEMBRE 2014

REFERENCIA IMÁGENES PORTADA:

Vista de la cola del embalse de Mequinenza desde el punto de toma de muestras.

CITA DEL DOCUMENTO: Confederación Hidrográfica del Ebro (2014). Explotación de la red de seguimiento de embalses en aplicación de la Directiva Marco del Agua en la Demarcación Hidrográfica del Ebro. 208 págs. más anejos. Disponible en PDF en la web: http://www.chebro.es

El presente informe pertenece al Dominio Público en cuanto a los Derechos Patrimoniales recogidos por el Convenio de Berna. Sin embargo, se reconocen los Derechos de los Autores y de la Confederación Hidrográfica del Ebro a preservar la integridad del mismo, las alteraciones o la realización de derivados sin la preceptiva autorización administrativa con fines comerciales, o la cita de la fuente original en cuanto a la infracción por plagio o colusión. A los efectos prevenidos, las autorizaciones para uso no científico del contenido deberán solicitarse a la Confederación Hidrográfica del Ebro.

ÍNDICE

			Página
1.	INTF	ODUCCIÓN	7
2.	DES	CRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE	7
	2.1.	Ámbito geológico y geográfico	7
	2.2.	Características morfométricas e hidrológicas	8
	2.3.	Usos del agua	
	2.4.	Registro de zonas protegidas	9
3.	TRA	BAJOS REALIZADOS	10
4.	DIAC	SNÓSTICO DE LA SITUACIÓN ACTUAL	11
	4.1.	Características fisicoquímicas de las aguas	11
	4.2.	Hidroquímica del embalse	14
	4.3.	Fitoplancton y concentración de clorofila	15
	4.4.	Zooplancton	19
5.	DIAC	SNÓSTICO DEL GRADO TRÓFICO	21
6.	DIAC	SNÓSTICO DEL POTENCIAL ECOLÓGICO	22
Α1	NEXO	I. REPORTAJE FOTOGRÁFICO	

ÍNDICE DE FIGURAS Y TABLAS

ÍNDICE DE FIGURAS CORRESPONDIENTES A GRÁFICOS Y FOTOS

Figura 1. Volumen embalsado y salida durante el año hidrológico 2013-2014	10
Figura 2. Localización de la estación de muestreo en el embalse	11
Figura 3. Perfil vertical de la temperatura y pH	12
Figura 4. Perfil vertical de la extinción luminosa y oxígeno disuelto	13
Figura 5. Perfil vertical de la conductividad	14
Figura 6. Perfil vertical de la clorofila a	17
Figura 7. Fotografía de la presa del embalse	28
Figura 8. Fotografía del punto de acceso al embalse.	28
ÍNDICE DE TABLAS	
Tabla 1. Características morfométricas del embalse de Mequinenza	8
Tabla 2. Estructura y composición de la comunidad de fitoplancton	15
Tabla 3. Composición detallada de la comunidad de fitoplancton	16
Tabla 4. Estructura y composición de la comunidad de zooplancton	19
Tabla 5. Composición detallada de la comunidad de zooplancton	20
Tabla 6. Parámetros indicadores y rangos de estado trófico.	21
Tabla 7. Diagnóstico del estado trófico del embalse de Mequinenza	21
Tabla 8. Parámetros y rangos para la determinación del potencial ecológico experimental.	22
Tabla 9. Combinación de los indicadores	23
Tabla 10. Diagnóstico del potencial ecológico del embalse de Mequinenza	23
Tabla 11. Valores de referencia propios del tipo (VR _t) y límites de cambio de clases de potencial ecológico de los indicadores de los elementos de calidad de embalses (Orden ARM/2656/2008).	24
Tabla 12. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.	25
Tabla 13. Combinación de los indicadores.	25
Tabla 14. Diagnóstico del potencial ecológico (PEnorm) del embalse de Mequinenza	26

1. INTRODUCCIÓN

El presente documento recoge los resultados de los trabajos realizados en el embalse de Mequinenza durante los muestreos de 2014 y la interpretación de los mismos, a efectos de proporcionar una referencia que facilite la consulta y explotación de la información obtenida.

En general, se recurre a presentaciones gráficas y sintéticas de la información, acompañadas de un texto conciso, lo que permitirá una consulta ágil y rápida del documento.

En el **Anexo I** se presenta un reportaje fotográfico que refleja el estado del embalse durante el periodo estudiado (verano de 2014, correspondiente al año hidrológico 2013-2014).

En apartados sucesivos se comentan los siguientes aspectos:

- Resultados del estudio en el embalse (FASE DE CARACTERIZACIÓN) de todos los aspectos tratados (hidrológicos, fisicoquímicos y biológicos), que culminan en el diagnóstico del grado trófico.
- Clasificación del "Potencial Ecológico", tras la aplicación de los indicadores biológicos y fisicoquímicos propuestos en la Directiva Marco del Agua.

2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE

2.1. Ámbito geológico y geográfico

La cuenca vertiente del embalse de Mequinenza se sitúa en la Depresión Terciaria del Ebro, extendiéndose al Sur hasta la rama aragonesa de la Cordillera Ibérica. De las unidades geológicas presentes en la cuenca vertiente, el embalse se ubica en los depósitos terciarios de la Depresión del Ebro.

El embalse de Mequinenza se sitúa dentro del término municipal de Mequinenza, en la provincia de Zaragoza. Regula las aguas del río Ebro.

2.2. Características morfométricas e hidrológicas

Se trata de un embalse de grandes dimensiones, sinuoso y con numerosos y marcados meandros.

La cuenca vertiente al embalse de Mequinenza tiene una superficie total de 5790814,61 ha.

El embalse tiene una capacidad total de 1534 hm³. Caracterizado por una profundidad media de 20 m, mientras que la profundidad máxima es de 60 m.

En la tabla 1 se presentan las características morfométricas del embalse.

Tabla 1. Características morfométricas del embalse de Mequinenza.

Capacidad total N.M.N.	1534 hm³
Superficie inundada	6478 ha
Cota máximo embalse normal	121 msnm

Tipo de clasificación: 12. Monomíctico, calcáreo de zonas no húmedas, pertenecientes a tramos bajos de ejes principales.

Se trata de un embalse monomíctico, de geología calcárea y ubicado en tramos bajos de los ejes principales. No existía termoclina en el momento del muestreo. El límite inferior de la capa fótica se encuentra alrededor de los 12 metros de profundidad determinado mediante medidor fotoeléctrico, aunque la estimación mediante el Disco de Secchi era de 8,8 m.

El tiempo de residencia hidráulica media en el embalse de Mequinenza para el año hidrológico 2013-2014 fue de 1,95 meses.

En la figura 1 se presentan los valores diarios del volumen embalsado y salida media correspondientes al año hidrológico 2013-2014.

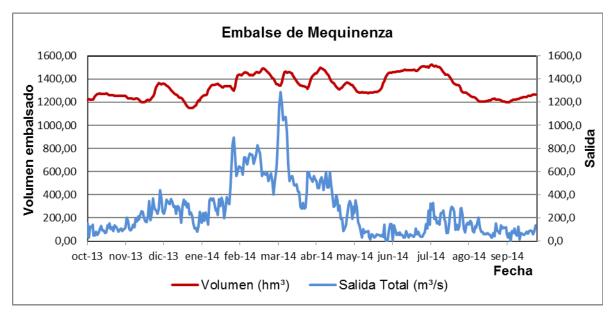


Figura 1. Volumen embalsado y salida durante el año hidrológico 2013-2014.

2.3. Usos del agua

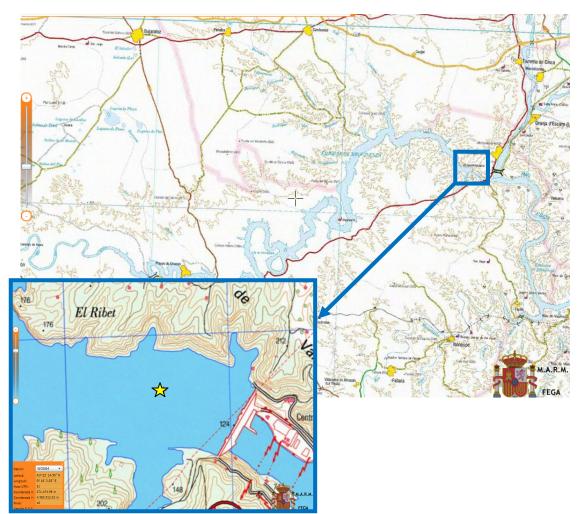
Las aguas del embalse se destinan principalmente a la producción hidroeléctrica y al abastecimiento de la población.

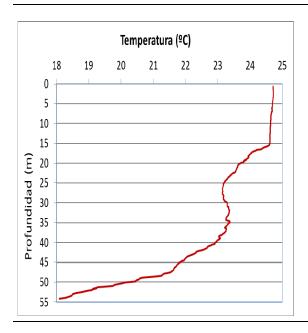
2.4. Registro de zonas protegidas

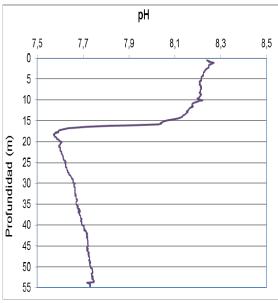
El embalse de Mequinenza forma parte del Registro de Zonas Protegidas elaborado por la Confederación Hidrográfica del Ebro, en contestación al artículo 6 de la Directiva Marco del Agua, dentro de las siguientes categorías: zonas de extracción de agua para consumo humano, zonas sensibles bajo el marco de la directiva 91/271/CEE y zonas de protección de hábitats o especies (Punto Red Natura 2000: ZEPA, ES0000182 "Valcuerna, Serreta Negra y Liberola").

3. TRABAJOS REALIZADOS

Para acometer la caracterización del embalse se ha ubicado una estación de muestreo en las inmediaciones de la presa (ver figura 2). Se ha completado una campaña de muestreo el 24 de Septiembre de 2014, en la que se midieron *in situ* los parámetros fisicoquímicos y la transparencia en la columna de agua, se tomó una muestra de agua integrada y otras puntuales para los análisis químicos y se realizaron muestreos de fitoplancton y zooplancton.

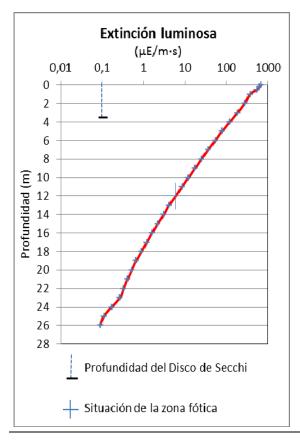



Figura 2. Localización de la estación de muestreo en el embalse.


4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL

4.1. Características fisicoquímicas de las aguas

De los resultados obtenidos se desprenden las siguientes apreciaciones:



La temperatura del agua oscila entre los 18,10 °C – en el fondo- y los 24,71 °C - máximo registrado en superficie-. En el momento del muestreo (Septiembre 2014) no existe termoclina.

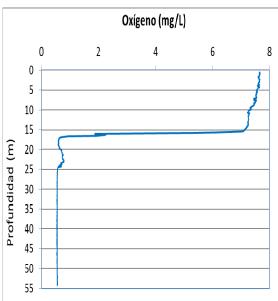
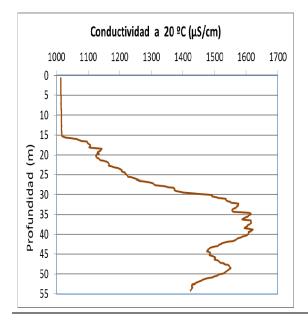

El pH del agua en la superficie es de 8,24, máximo epilimnético. En el fondo del embalse el valor del pH es de 7,73. El valor mínimo estival se sitúa a 18 m con un pH de 7,57.

Figura 3. Perfil vertical de la temperatura y pH.

La transparencia del agua registrada en la lectura de disco de Secchi es de 3,50 m, lo que supone una profundidad de la capa fótica en torno a 8,8 metros. Sin embargo, la capa fótica determinada con medidor fotoeléctrico es de 12 m, por lo que a efectos de muestreo se considera ese espesor de columna de agua.

La turbidez media de la zona eufótica (muestra integrada a 12 m de profundidad) fue de 2,25 UAF.



Las condiciones de oxigenación de la columna de agua alcanzan en la zona fótica una concentración media de 7,50 mg/L. Se han detectado condiciones anóxicas (<2 mg O_2/L) en profundidades superiores a 16,5 m, creando una fuerte oxiclina entre los 15 y los 16,5 metros de profundidad.

Figura 4. Perfil vertical de la extinción luminosa y oxígeno disuelto.

La conductividad del agua es de 1014 μ S/cm en la superficie y de 1423 μ S/cm en el fondo. Encontrando el máximo de conductividad a 39 metros de profundidad con un valor de 1621 μ S/cm.

Figura 5. Perfil vertical de la conductividad.

4.2. Hidroquímica del embalse

De los resultados analíticos obtenidos en la campaña de 2014 en la muestra integrada, se desprenden las siguientes apreciaciones:

- La concentración de fósforo total (PT) en la muestra integrada (zona fótica) fue de 12,61
 µg P/L.
- La concentración de P soluble fue de 0,97 μg P/L.
- La concentración de nitrógeno total (NT) fue de 1,64 mg N/L.
- La concentración de nitrógeno inorgánico oxidado (nitrato + nitrito, NIO) tomó un valor de 1,39 mg N/L.
- La concentración de amonio (NH₄) resultó ser de 0,013 mg N/L.
- La concentración de sílice tomó un valor de 2,30 mg SiO₂/L_.
- La alcalinidad en este embalse (zona fótica) fue de 2,75 meq/L.

4.3. Fitoplancton y concentración de clorofila

En el análisis de fitoplancton se han identificado un total de 32 especies, distribuidas en los siguientes grupos taxonómicos:

BACILLARIOPHYCEAE	2
CHLOROPHYCEAE	16
ZYGNEMATOPHYCEAE	2
CYANOBACTERIA	5
CRYPTOPHYCEAE	6
DINOPHYCEAE	1

La estructura de la comunidad de fitoplancton se resume en la tabla 2 y la composición detallada en la tabla 3.

Tabla 2. Estructura y composición de la comunidad de fitoplancton.

PARÁMETRO UNIDAD		VALOR		
N° CÉLULAS TOTALES n° cel./ml		150262,76		
BIOVOLUMEN TOTAL μm³/ml		674286		
Diversidad Shar	nnon-Wiener	0,38		
CLASE PREDOMINA	NTE (DENSIDAD)	Cyanobacteria		
Nº célula	as/ml	144455,95		
ESPECIE PREDOMINA	ANTE (DENSIDAD)	Merismopedia warmingiana		
Nº célula	as/ml	143837,05		
CLASE PREDOMINAN	TE (BIOVOLUMEN)	Chlorophyceae		
μm³/n	nl	267715		
ESPECIE PREDOMINANTE (BIOVOLUMEN)		Merismopedia warmingiana		
μm³/ml		130141		

La concentración de clorofila fue de 3,38 µg/L para la muestra integrada, cuya profundidad se ha señalado en la figura 6 con una línea roja. El perfil vertical determinado mediante fluorimetría ha mostrado un máximo epilimnético en superficie.

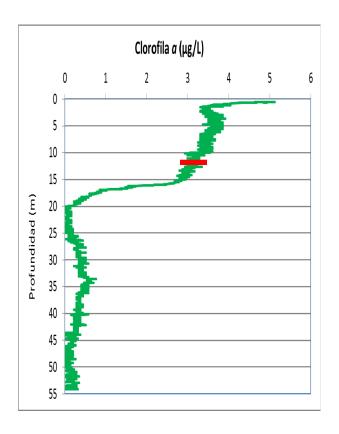


Figura 6. Perfil vertical de la clorofila a.

La composición de la población fitoplanctónica de la muestra integrada de la zona fótica indicando su abundancia y biovolumen, y la densidad cualitativa de la muestra integrada de fitoplancton del muestreo vertical con red de plancton, muestran los resultados de la tabla 3:

Tabla 3. Composición detallada de la comunidad de fitoplancton.

	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	μm³/ml	
	BACILLARIOPHYCEAE/CENTRALES/			
CYCLOCEL0	Cyclotella ocellata	561,39	98150	1
CYCLRADI0	Cyclotella radiosa	17,00	12928	1
	BACILLARIOPHYCEAE /PENNALES/			
AMPHOVAL0	Amphora ovalis			1
FRAGCROT0	Fragilaria crotonensis			1
NAVICRYH0	Navicula cryptocephala			1
NITZPALE0	Nitzschia palea			1
	CHLOROPHYTA			
CARTEGEN0	Carteria sp.	6,61	9501	
COELASTR0	Coelastrum astroideum			1
COELMICR0	Coelastrum microporum			1
COENHIND0	Coenochloris hindakii	872,43	57100	2
CRUCRECT0	Crucigeniella rectangularis	295,87	18936	1

	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	μm³/ml	
CHLAMGEN0	Chlamydomonas sp.	326,21	25545	
CCENILIVETO	Desmodesmus hystrix (=Scenedesmus			
SCENHYST0	hystrix)	121,38	4576	1
DIDYCOMA0 Didymocystis comasii		242,76	2542	1
ELAKGELA0	Elakatothrix gelatinosa	17,95	958	
COELPOLY0	Hariotina polychorda (=Coelastrum			
COELFOLTO	polychordum)	60,46	3957	1
KIRCARCU0	Kirchneriella arcuata	3,78	170	1
PEDISIMP0	Monactinus simplex (=Pediastrum simplex)	30,23	7558	1
OOCYLACU0	Oocystis lacustris	33,06	1939	1
OOCYMARS0	Oocystis marssonii			1
PEDIDUPL0	Pediastrum duplex			1
PEDINGEN0	Pedinomonas sp.	7,59	357	
PHACLENT0	Phacotus lenticularis	8,50	2137	
PLANLAUT0	Planctonema lauterbornii	2708,17	93056	2
SCENARMA0	Scenedesmus armatus (=Desmodesmus			
SCLIVARIVIAO	armatus)			1
SPHAPLAN0	Sphaerocystis planctonica	136,04	36470	1
TETRKOMA0	Tetrastrum komarekii	242,76	2913	1
	ZYGNEMATOPHYCEAE			
CLOSACUT0	Closterium acutum	6,61	6856	1
STAUPARA0	Staurastrum paradoxum	0,94	7791	1
	CYANOBACTERIA			
APHAGRAC0	Aphanizomenon gracile	125,93	12363	1
APHASGEN0	Aphanocapsa sp.			1
APHANGEN0	Aphanothece sp.	455,18	643	1
CHRODISP0	Chroococcus dispersus			2
CHROMINU0	Chroococcus minutus	22,67	1484	2
CHROTURG0	Chroococcus turgidus	15,12	989	
CUSPISSA0	Cuspidothrix issatschenkoi			1
MERIWARM0	Merismopedia warmingiana	143837,05	130141	5
PSEUDGEN0	Pseudanabaena sp.			1
	CRYPTOPHYCEAE			
CRYPEROS0	Cryptomonas erosa	3,78	9032	
CRYERREF2	Cryptomonas erosa var. reflexa	9,45	22581	
CRYPMARS0	Cryptomonas marsonii	13,23	7535	
CRYPOVAT0	Cryptomonas ovata	2,83	3950	
PLAGLACU0	Plagioselmis (=Rhodomonas) lacustris	68,28	9038	
	Plagioselmis nannoplanctica			
PLAGNANN0	(=Rhodomonas lacustris var.			
	nannoplanctica)	7,59	445	
	DINOPHYCEAE			
CERAHIRU0	Ceratium hirundinella	1,89	82643	1

TOTALES BACILLARIOPHYCEAE	578,39	111078	
TOTALES CHLOROPHYTA	5113,81	267715	
TOTALES ZYGNEMATOPHYCEAE	7,56	14647	
TOTALES CYANOBACTERIA	144455,95	145621	
TOTALES CRYPTOPHYCEAE	105,15	52581	
TOTALES DINOPHYCEAE	1,89	82643	
TOTALES ALGAS	150262,76	674286	

Nota: Entre paréntesis se cita el anterior nombre de la especie.

Clases de	% de
abundancia	presencia
1	<9
2	10-24
3	25-60
4	61-99
5	>99

4.4. Zooplancton

En el análisis de zooplancton de las muestras del embalse de Mequinenza se han identificado un total de 12 especies, distribuidas en los siguientes grupos taxonómicos:

- 2 Cladocera
- 3 Copepoda
- 7 Rotifera

La estructura y composición de la comunidad de zooplancton se resume en la tabla 4:

Tabla 4. Estructura y composición de la comunidad de zooplancton.

PARÁMETRO	UNIDAD	VALOR		
PROFUNDIDAD	PROFUNDIDAD m		15,0	
DENSIDAD TOTAL individuos/L		192,69		
BIOMASA TOTAL	μg/L		162,83	
Diversidad Sh	annon-Wiener		2,48	
CLASE PREDOMIN	ANTE (DENSIDAD)		Copépodos	
individ	luos/L	82,31		
ESPECIE PREDOMII	NANTE (DENSIDAD)	Ciclópido		
individ	luos/L	67,69		
CLASE PREDOMIN	IANTE (BIOMASA)	Cladóceros		
μд	/L	107,85		
TAXÓN PREDOMIN	NANTE (BIOMASA)	Ceriodapnia dubia		
μg/L		88,62		
	COLUMNA AGUA INTEGRADA (red vertical)		0 - 30 m	
CLADÓCEROS: 30,84 % COPÉPODOS		8: 48,92 % ROTÍFEROS : 20,24 %		

La composición detallada de la población zooplanctónica presente en la muestra cuantitativa de zooplancton indicando la densidad y biomasa, y el porcentaje de las especies presentes en la muestra integrada de la red vertical, se muestran en la tabla 5:

Tabla 5. Composición detallada de la comunidad de zooplancton.

CÓDIGO	COMPOSICIÓN	ABUNDANCIA	BIOMASA	PORCENTAJE
TAXÓN	ZOOPLANCTON	Ind./L	mg/L	%
	CLADÓCEROS			
CERIDUBI0	Ceriodapnia dubia	55,38	88,62	26,02
DIAPMONG0	Diaphanosoma mongolianum	7,69	19,23	4,82
	COPÉPODOS			
COPINUMI0	Copidodiaptomus numidicus	13,85	35,98	24,58
CYCLOGEN0	Cyclops sp.	-	-	0,96
THERDYBO0	Thermocyclops dybowskii	0,77	1,80	2,17
CYCLOPFAM	Ciclópido	67,69	12,92	21,20
	ROTÍFEROS			
ASCOOVAL0	Ascomorpha ovalis	7,69	0,48	0,96
COLLOGEN0	Collotheca sp.	10,77	0,32	1,93
CONONATA0	Conochilus natans	-	-	0,96
CONOCGEN0	Conochilus sp	1,54	0,15	-
HEXAMIRA0	Hexathra mira	3,08	0,64	1,93
POLYDOLI0	Polyarthra dolichoptera	5,38	0,27	0,96
POLYMAJO0	Polyarthra major	18,46	2,40	10,60
TRICCYLI0	Trichocerca cylindrica	0,38	0,01	0,96
	OTROS			
DREIPOLY0	<i>Dreissena polymorpha</i> (Mejillón cebra)	-	-	1,93
	Total Cladóceros	63,08	107,85	30,84
	Total Copépodos	82,31	50,70	48,92
	Total Rotíferos	47,31	4,28	20,24
	Total Otros	-	-	1,93
	Total	192,69	162,83	100,00

5. DIAGNÓSTICO DEL GRADO TRÓFICO

Se han considerando los indicadores especificados en la tabla 6, estableciéndose el estado trófico global del embalse según la metodología descrita en la sección 5 de la MEMORIA DEL ESTUDIO.

Tabla 6. Parámetros indicadores y rangos de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (μg P/L)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L) epilimnion	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cel./ml)	<100	100-1000	1000-10000	10000-100000	>100000
VALOR PROMEDIO FINAL	> 4,2	3,4 - 4,2	2,6 - 3,4	1,8 – 2,6	< 1,8

En la tabla 7 se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final.

Tabla 7. Diagnóstico del estado trófico del embalse de Mequinenza.

INDICADOR	VALOR	ESTADO TRÓFICO
P TOTAL	12,61	Mesotrófico
CLOROFILA a	3,38	Mesotrófico
DISCO SECCHI	3,50	Oligotrófico
DENSIDAD ALGAL	150263	Hipereutrófico
ESTADO TRÓFICO FINAL	2,75	MESOTRÓFICO

Atendiendo a los criterios seleccionados, los parámetros fósforo total (PT) y concentración de clorofila *a* sitúan al embalse en rangos de mesotrofia. Mientras que la transparencia (DS) indica un estado de oligotrofia y la densidad algal clasifica el embalse como hipereutrófico. Combinando todos los indicadores el estado trófico final para el embalse de MEQUINENZA ha resultado ser **MESOTRÓFICO**.

6. DIAGNÓSTICO DEL POTENCIAL ECOLÓGICO

a) Aproximación experimental (PEexp)

Se han considerando los indicadores especificados en la tabla 8, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3 de la MEMORIA DEL ESTUDIO.

Tabla 8. Parámetros y rangos para la determinación del potencial ecológico experimental.

Indicador	Elementos	Elementos Parámetros			Moderado	Deficiente	Malo	
		Densidad algal (cel./ml)	<100	100-10 ³	10 ³ -10 ⁴	10 ⁴ -10 ⁵	>10 ⁵	
		Biomasa algal, Clorofila a (μg/L)	0-1	1-2,5	2,5-8	8,0-25	>25	
		Biovolumen algal (mm³/L)	<0,1	0,1-0,5	0,5-2	2-8	>8	
	Fitoplancton	Phytoplankton Assemblage Index (Q)	>4	3-4	2-3	1-2	<1	
Biológico		Trophic Index (TI)	<2,06	2,06-2,79	2,79-3,52	3,52-4,25	>4,25	
		Phytoplankton Trophic Index (PTI)	>4,2	3,4-4,2	2,6-3,4	1,8-2,6	<1,8	
		Phytoplankton Reservoir Trophic Index (PRTI)	<3,8	3,8-6,6	6,6-9,4	9,4-12,2	>12,2	
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	<3,8	3,8-6,6	6,6-9,4	9,4-12,2	>12,2	
	INDICADOR B	IOLÓGICO (1)	> 4, 2	3, 4 -4, 2	2,6-3,4	1, 8 -2, 6	< 1, 8	
	Transparencia	Profundidad Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7	
Fisicoquímico	Oxigenación	Concentración O ₂ (mg O ₂ /L)	>8	8-6	6-4	4-2	<2	
	Nutrientes Concentración de PT (µg P/L)		0-4	4-10	10-35	35-100	>100	
INDICADOR FISICOQUÍMICO (2)			MPE	AS FUN		NO AS FUN		
			>4,2	3,4-4,2		<3,4		

- (1) La valoración del indicador biológico se obtiene asignando la calificación del elemento de menor puntuación (fitoplancton o zooplancton) o peor calidad, según la metodología *one out. all out.*
- (2) La valoración del indicador fisicoquímico se obtiene realizando la media de las puntaciones obtenidas para los distintos elementos. Si la media de los 3 elementos es igual o superior a 4,2 se considera que se cumplen las condiciones fisicoquímicas propias del máximo potencial ecológico (MPE). Si se alcanzan o superan los 3,4 puntos, se considera que las condiciones fisicoquímicas aseguran el funcionamiento del ecosistema (AS.FUN). Si no se alcanzan los 3,4 puntos, el indicador fisicoquímico no asegura el funcionamiento del ecosistema (NO AS.FUN).

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico experimental final sigue el esquema de decisiones indicado en la tabla 9:

Tabla 9. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Experimental
Máximo	MPE	Máximo
Máximo	As Fun	Bueno
Máximo	No As Fun	Moderado
Bueno	MPE	Bueno
Bueno	As Fun	Bueno
Bueno	No As Fun	Moderado
Moderado	Indistinto	Moderado
Deficiente	Indistinto	Deficiente
Malo	Indistinto	Malo

En la tabla 10 se incluye el potencial indicado por cada uno de los parámetros e indicadores, así como la catalogación de la masa de agua según el potencial ecológico final.

Tabla 10. Diagnóstico del potencial ecológico del embalse de Mequinenza.

Indicador	Elementos	Parámetros	Valor	Potencial	
		Densidad algal (cel/ml)	150263	Malo	
		Clorofila a (μg/L)	3,38	Moderado	
		Biovolumen algal (mm³/L)	0,67	Moderado	
	Fitoplancton	Phytoplankton Assemblage Index (Q)	4,33	Máximo	
Biológico		Phytoplankton Trophic Index (PTI)	3,59	Bueno	
		Trophic Index (TI)	2,40	Bueno	
		Phytoplankton Reservoir Trophic Index (PRTI)	7,67	Moderado	
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	7,91	Moderado	
	INDICADOR BIOLÓGICO				
	Transparencia	Disco de Secchi (m)	3,50	Bueno	
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	2,56	Deficiente	
	Nutrientes	Nutrientes Concentración de PT (µg P/L)			
	3,0	NO AS FUN			
POTENCIAL ECOLÓGICO			MODERADO		

b) Aproximación normativa (PEnorm)

Se han considerado los indicadores, los valores de referencia y los límites de clase B⁺/M (Bueno o superior/Moderado), M/D (Moderado/Deficiente) y D/M (Deficiente/Malo), así como sus ratios de calidad ecológica (RCE), especificados en las tablas 11 y 12, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado b) de la MEMORIA DEL ESTUDIO.

Tabla 11. Valores de referencia propios del tipo (VR_t) y límites de cambio de clase de potencial ecológico de los indicadores de los elementos de calidad de embalses (Orden ARM/2656/2008).

Time Flaments		D	la d'andan	\/D	B [⁺] /M	M/D	D/M
Tipo	Elemento	Parámetro	Indicador	VR _t	(RCE)	(RCE)	(RCE)
		Biomasa	Clorofila a mg/m ³	2,00	0,211	0,14	0,07
Tipo 1	Fitoplancton	ыотпаза	Biovolumen mm ³ /L	0,36	0,189	0,126	0,063
Проп	1 Itopiancton	Composición	Índice de Catalán (IGA)	0,10	0,974	0,649	0,325
		Composicion	Porcentaje de cianobacterias	0,00	0,908	0,607	0,303
		Biomasa	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
T: 7	Fit and an atom	ыотпаѕа	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 7	Fitoplancton	0	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
	F:	Biomasa	Biovolumen mm³/L	0,76	0,362	0,24	0,12
Tipo 9	Fitoplancton	Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa Composición	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
T: 10	F:		Biovolumen mm³/L	0,76	0,362	0,24	0,12
Tipo 10	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
			Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 11	Fitoplancton	Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composicion	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
			Clorofila a mg/m ³	2,40	0,195	0,13	0,065
			Biovolumen mm ³ /L	0,63	0,175	0,117	0,058
Tipo 12	Tipo 12 Fitoplancton		Índice de Catalán (IGA)	1,50	0,929	0,619	0,31
	Composición	Porcentaje de cianobacterias	0,10	0,686	0,457	0,229	
		Biomasa	Clorofila a mg/m ³	2,10	0,304	0,203	0,101
			Biovolumen mm ³ /L	0,43	0,261	0,174	0,087
Tipo 13	Fitoplancton	Composición	Índice de Catalán (IGA)	1,10	0,979	0,653	0,326
			Porcentaje de cianobacterias	0,00	0,931	0,621	0,31

Tabla 12. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.

			RANGOS DEL RCE					
Indicador	Elementos	Parámetros	Máximo	Bueno	Moderado	Deficiente	Malo	
		Clorofila a (µg/L)	≥ 1	0,99 – 0,195	0,194 - 0,13	0,12 - 0,065	< 0,065	
Dial faire	Fitantanatan	Biovolumen algal (mm³/L)	≥ 1	0,99 – 0,175	0,174 – 0,117	0,116 - 0,058	< 0,058	
Biológico	Fitoplancton	Índice de Catalán (IGA)	≥ 1	0,99 - 0,929	0,928 – 0,619	0,618 – 0,31	< 0,31	
		Porcentaje de cianobacterias	≥ 1	0,99 - 0,686	0,685 – 0,457	0,456 - 0,229	< 0,229	
	Máximo Bueno Moderado Deficiente						Malo	
INDICADOR BIOLÓGICO			> 0,8	0,6-0,8	0,4-0,6	0,2-0,4	< 0,2	
				•				
				RA	NGOS DE VALO	RES		
Indicador	Elementos	Parámetros	Máximo	Bueno	Moderado	Deficiente	Malo	
	Transparencia	Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7	
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	>8	8-6	6-4	4-2	<2	
	Nutrientes	Concentración de PT (µg P/L)	0-4	4-10	10-35	35-100	>100	
			MPE	AS FUN	NO AS FUN			
INDICADOR FISICOQUÍMICO			>4,2	3,4-4,2		<3,4		

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico normativo final sigue el esquema de decisiones indicado en la tabla 13.

Tabla 13. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Normativo
Máximo	MPE	Máximo
Máximo	As Fun	Bueno
Máximo	No As Fun	Moderado
Bueno	MPE	Bueno
Bueno	As Fun	Bueno
Bueno	No As Fun	Moderado
Moderado	Indistinto	Moderado
Deficiente	Indistinto	Deficiente
Malo	Indistinto	Malo

En la tabla 14 se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico final (*PEnorm*) tras pasar el filtro del indicador fisicoquímico.

Tabla 14. Diagnóstico del potencial ecológico (PEnorm) del embalse de Mequinenza.

Indicador	Elementos	Parámetro	Indicador	Valor	RCE	RCET	PEnorm	
			Clorofila a (µg/L)	3,38	0,71	0,86	Bueno	
		Biomasa	Biovolumen algal (mm³/L)	0,67	0,93	0,97	Bueno	
			Media			0,91		
Biológico	Fitoplancton		Índice de Catalán (IGA)	3,79	0,994	0,97	Bueno	
		Composición	Porcentaje de cianobacterias	0,00	1,00	1,00	Máximo	
			Media			0,98		
	Media global					0,95		
	INDIC	ADOR BIOLÓGIC	0	0,95			MÁXIMO	
Indica	ador	Elementos	Indicador	,	Valor		PEnorm	
		Transparencia	Disco de Secchi (m)	3,50			Bueno	
Fisicoquímico	,	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	2,56			Deficiente	
Nutrientes		Concentración de PT (μg P/L)	12,61			Moderado		
INDICADOR FISICOQUÍMICO					3,0		NO AS FUN	
POTENCIAL ECOLÓGICO PEnorm				M	ODERAL	00		

ANEXO I. REPORTAJE FOTOGRÁFICO

Figura 7. Vista de la presa del embalse

Figura 8. Vista del punto de acceso