

RED DE SEGUIMIENTO DE MASAS DE AGUA MUY MODIFICADAS DEMARCACIÓN HIDROGRÁFICA DEL EBRO

INFORME FINAL DEL EMBALSE DE CAVALLERS

ÁREA DE CALIDAD DE AGUAS CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

RED DE SEGUIMIENTO DE MASAS DE AGUA MUY MODIFICADAS

DEMARCACIÓN HIDROGRÁFICA DEL EBRO

PROMOTOR:

CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

SERVICIO:

CONTROL DEL ESTADO ECOLÓGICO

DIRECCIÓN DEL PROYECTO:

Concha Durán Lalaguna y María José Rodríguez Pérez

EMPRESA CONSULTORA:

Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia Estudi General

EQUIPO DE TRABAJO:

Área de Limnología, dirigida por Dr. Eduardo Vicente Pedrós, Catedrático de Ecología. Director del Estudio.

PRESUPUESTO DE LA ADJUDICACIÓN:

70.590,38 €

CONTENIDO:

INFORME INDIVIDUAL DEL EMBALSE DE CAVALLERS

AÑO DE EJECUCIÓN:

2015

FECHA ENTREGA:

DICIEMBRE 2015

REFERENCIA IMÁGENES PORTADA:

Vista panorámica del embalse de Cavallers.

CITA DEL DOCUMENTO: Confederación Hidrográfica del Ebro (2015). Red de seguimiento de masas de agua muy modificadas en la Demarcación Hidrográfica del Ebro. 208 págs. más anejos. Disponible en PDF en la web: http://www.chebro.es

El presente informe pertenece al Dominio Público en cuanto a los Derechos Patrimoniales recogidos por el Convenio de Berna. Sin embargo, se reconocen los Derechos de los Autores y de la Confederación Hidrográfica del Ebro a preservar la integridad del mismo, las alteraciones o la realización de derivados sin la preceptiva autorización administrativa con fines comerciales, o la cita de la fuente original en cuanto a la infracción por plagio o colusión. A los efectos prevenidos, las autorizaciones para uso no científico del contenido deberán solicitarse a la Confederación Hidrográfica del Ebro.

ÍNDICE

		Págin	2
1.	INTR	ODUCCIÓN7	
2.	DES	CRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE7	
	2.1.	Ámbito geológico y geográfico	
	2.2.	Características morfométricas e hidrológicas	
	2.3.	Usos del agua9	
	2.4.	Registro de zonas protegidas9	
3.	TRA	BAJOS REALIZADOS10	
4.	DIAG	NÓSTICO DE LA SITUACIÓN ACTUAL11	
	4.1.	Características físico-químicas de las aguas	
	4.2.	Hidroquímica del embalse	
	4.3.	Fitoplancton y concentración de clorofila	
	4.4.	Zooplancton	
5.	DIAG	NÓSTICO DEL GRADO TRÓFICO18	
6.	DIAG	NOSTICO DEL POTENCIAL ECOLÓGICO20	
Α1	NEXO	I. REPORTAJE FOTOGRÁFICO	

ÍNDICE DE FIGURAS Y TABLAS

ÍNDICE DE FIGURAS CORRESPONDIENTES A GRÁFICOS Y FOTOS

F igura 1. Volumen embalsado y salida durante el año hidrológico 2014-2015	9
Figura 2. Localización de la estación de muestreo en el embalse	10
Figura 3. Perfil vertical de la temperatura y conductividad	11
Figura 4. Perfil vertical de la extinción luminosa y oxígeno disuelto	12
Figura 5. Fotografía de la presa del embalse	26
Figura 6. Fotografía de la cola del embalse	26
NDICE DE TABLAS	
Tabla 1. Características morfométricas del embalse de Cavallers	8
Fabla 2. Estructura y composición de la comunidad de fitoplancton	14
Tabla 3. Composición detallada de la comunidad de fitoplancton	15
Fabla 4. Estructura y composición de la comunidad de zooplancton	17
Fabla 5. Composición detallada de la comunidad de zooplancton	18
Tabla 6. Parámetros indicadores y rangos de estado trófico.	19
Tabla 7. Diagnóstico del estado trófico del embalse de Cavallers.	19
Fabla 8. Parámetros y rangos para la determinación del potencial ecológico experimental.	20
Fabla 9. Combinación de los indicadores.	21
Tabla 10. Diagnóstico del potencial ecológico del embalse de Cavallers.	21
Tabla 11. Valores de referencia propios del tipo (VR _t) y límites de cambio de clases de potencial ecológico de los indicadores de los elementos de calidad de embalses (RD 817/2015).	22
Fabla 12. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.	23
Tabla 13. Combinación de los indicadores.	23
Tabla 14. Diagnóstico del potencial ecológico (PEnorm) del embalse de Cavallers	24

1. INTRODUCCIÓN

El presente documento recoge los resultados de los trabajos realizados en el embalse de Cavallers durante los muestreos de 2015 y la interpretación de los mismos, a efectos de proporcionar una referencia que facilite la consulta y explotación de la información obtenida.

En general, se recurre a presentaciones gráficas y sintéticas de la información, acompañadas de un texto conciso, lo que permitirá una consulta ágil y rápida del documento.

En el **Anexo I** se presenta un reportaje fotográfico que refleja el estado del embalse durante el periodo estudiado (verano 2015, correspondiente al año hidrológico 2014-2015).

En apartados sucesivos se comentan los siguientes aspectos:

- Resultados del estudio en el embalse (FASE DE CARACTERIZACIÓN) de todos los aspectos tratados (hidrológicos, fisicoquímicos y biológicos), que culminan en el diagnóstico del grado trófico.
- Clasificación del "Potencial Ecológico", tras la aplicación de los indicadores biológicos y fisicoquímicos propuestos en la Directiva Marco del Agua.

2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE

2.1. Ámbito geológico y geográfico

El embalse de Cavallers está situado en la ladera meridional del Pirineo central axial, en el que destacan los relieves cuaternarios sobre granitos y pizarras que forman diversas formas de relieve abrupto, debido al modelado glacial y peri-glacial (tarteras, riscales, desfiladeros, lagos, circos glaciares, estanques, valles con perfil de U colgadas y escalonadas, etc.).

El embalse, cuya presa fue terminada en 1960, se sitúa en término municipal de Valle de Bohí, en la provincia de Lérida. Regula principalmente las aguas de la Noguera de Tort, tributario por la margen izquierda del río Noguera Ribagorzana.

2.2. Características morfométricas e hidrológicas

Es un embalse de pequeñas dimensiones que no presentan grandes variaciones en el eje longitudinal.

La cuenca vertiente al embalse de Cavallers tiene una superficie total de 2513 ha.

El embalse tiene una extensión de 47 ha en su máximo nivel normal y una capacidad total de 16 hm³. Tiene una profundidad media de 33,8 m, mientras que la profundidad máxima alcanza los 71 m.

En la tabla 1 se presentan las características morfométricas del embalse

Tabla 1. Características morfométricas del embalse de Cavallers.

Superficie de la cuenca total (ha)	2 513
Superficie del embalse (ha)	47
Longitud máxima del embalse (km)	1,5
Capacidad total (hm³)	16
Profundidad máxima (m)	71
Profundidad media (m)	33,8
Perímetro en máximo nivel (km)	3
Cota máximo nivel embalsado (msnm)	1781

Tipo de clasificación: 13. Dimíctico, de zona muy húmeda a más de 1.400 m de altitud.

Se trata de un embalse dimíctico. Debido a la realización del muestreo desde la presa, no se pudo determinar la existencia de una termoclina en el momento del muestreo. El disco de Secchi determina que límite inferior de la capa fótica llegaría hasta los 45 m.

El tiempo de residencia hidráulica media en el embalse de Cavallers para el año hidrológico 2014-2015 fue de 1,39 meses.

En la figura 1 se presentan los valores del volumen embalsado y salida media diaria correspondientes al año hidrológico 2014-2015.

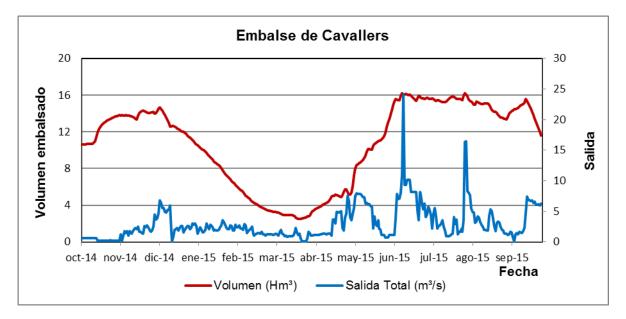


Figura 1. Volumen embalsado y salida durante el año hidrológico 2015-2014.

2.3. Usos del agua

Las aguas del embalse se destinan principalmente a la producción hidroeléctrica, que se suministran a la central hidroeléctrica de Caldas mediante un canal subterráneo instalado en la margen derecha del embalse. La principal actividad recreativa que se efectúa en el embalse es la pesca.

2.4. Registro de zonas protegidas

El embalse de Cavallers forma parte del Registro de Zonas Protegidas elaborado por la Confederación Hidrográfica del Ebro, en contestación al artículo 6 de la Directiva Marco del Agua, dentro de la categoría Zonas de protección de habitats o especies.

Se encuentra ubicado el LIC ES0000022, que coincide con el Parque Nacional de Aigüestortes-Estany de Sant Maurici. La vegetación forma un mosaico de notable diversidad de comunidades vegetales pirenaicas, en función de diversos gradientes ambientales como la altitud (964-3023 metros), el substrato, y la humedad. En general, la fauna es la propia de la alta montaña pirenaica y destacan la nutria (*Lutra lutra*), el desmán de los Pirineos (*Galemys pyrenaicus*) y el cavilat (*Cottus gobio*) como especies asociadas a ecosistemas acuáticos.

3. TRABAJOS REALIZADOS

Para acometer la caracterización del embalse se ha ubicado una estación de muestreo desde la propia presa (ver figura 2). Se ha completado una campaña de muestreo el 14 de Julio de 2015, en la que se midieron *in situ* los parámetros físico-químicos y el Disco de Secchi en la columna de agua, se tomó una muestra de agua integrada para los análisis químicos y se realizaron muestreos de fitoplancton y zooplancton.

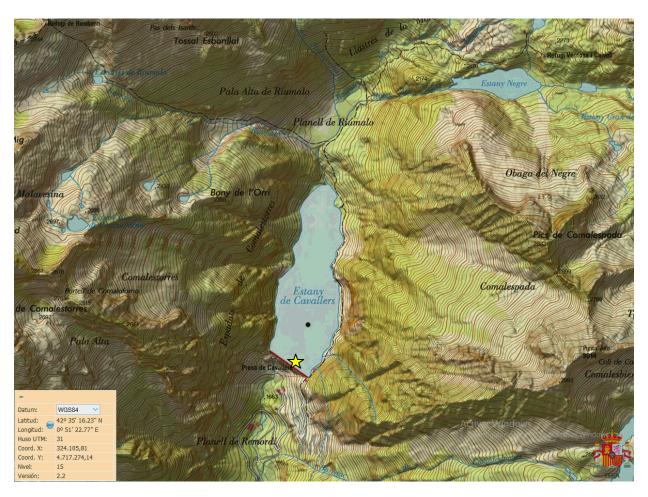
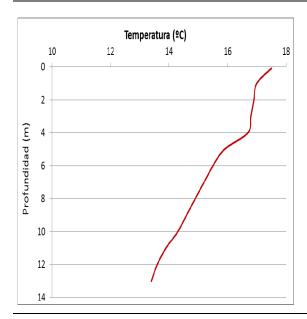
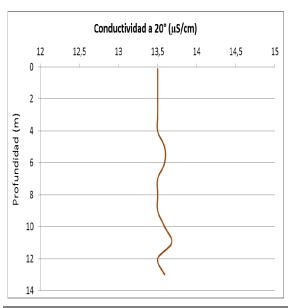


Figura 2. Localización de la estación de muestreo en el embalse.

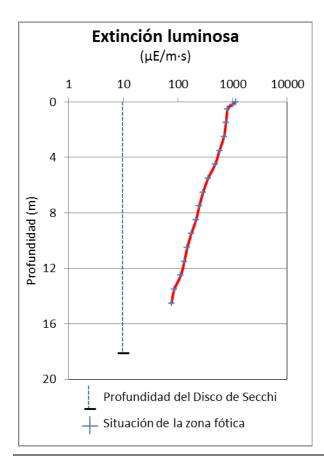


4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL

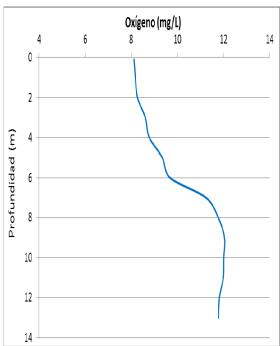

4.1. Características físico-químicas de las aguas

De los resultados obtenidos con el muestreo realizado desde la presa, por la inaccesibilidad de las orillas del embalse, se desprenden las siguientes apreciaciones:

El pH del agua en la superficie es de 7,0.


La temperatura del agua oscila entre los 13,4 °C –a 13 m- y los 16,85 °C -máximo registrado en superficie-. En el momento del muestreo (Julio 2015), con las medidas realizadas, no se aprecia termoclina.

La conductividad del agua es de 13,5 μ S/cm en la superficie y un valor de 13,6 μ S/cm a 13 metros de profundidad. Son valores muy bajos de conductividad y propios de la zona donde se ubica el embalse.


Figura 3. Perfiles verticales de la temperatura y conductividad.

La transparencia del agua registrada en la lectura de disco de Secchi (DS) es de 18,0 metros, lo que supone una profundidad de la capa fótica que llega hasta los 45,0 m de profundidad.

La turbidez media de la zona eufótica (muestra integrada de 9 m de profundidad) fue de 0,12 UAF.

Las condiciones de oxigenación en el muestreo alcanzan una concentración media de 10,26 mg/L. No se han detectado condiciones anóxicas (<2 mg O₂/L).

Figura 4. Perfiles verticales de la extinción luminosa y el oxígeno disuelto.

4.2. Hidroquímica del embalse

De los resultados analíticos obtenidos en la campaña de 2015 en la muestra integrada, se desprenden las siguientes apreciaciones:

- La concentración de fósforo total (PT) en la muestra integrada (zona fótica) fue de 2,56
 μg P/L.
- La concentración de P soluble fue de 2,45 μg P/L.
- La concentración de nitrógeno total (NT) fue de 0,19 mg N/L.
- La concentración de nitrógeno inorgánico oxidado (nitrato + nitrito, NIO) tomó un valor de 0,14 mg N/L.
- La concentración de amonio (NH₄) resultó estar por debajo del límite de detección,
 <0,01 mg N/L.
- La concentración de sílice tomó un valor de 2,04 mg SiO₂/L
- La alcalinidad en este embalse (zona fótica) fue de 0,28 meq/L.

4.3. Fitoplancton y concentración de clorofila

En el análisis de fitoplancton se han identificado un total de 18 especies, distribuidas en los siguientes grupos taxonómicos:

BACILLARIOPHYCEAE	3
CHRYSOPHYCEAE	4
SYNUROPHYCEAE	1
CHLOROPHYTA	6
CRYPTOPHYCEAE	3
DINOPHYCEAE	1

La estructura y composición de la comunidad de fitoplancton se resume en la tabla 2:

Tabla 2. Estructura y composición de la comunidad de fitoplancton.

PARÁMETRO UNIDAD		VALOR	
Nº CÉLULAS TOTALES	nº cél./ml	587	
BIOVOLUMEN TOTAL	μm³/ml	45531	
Diversidad Shanno	n-Wiener	1,62	
CLASE PREDOMINANTI	E (DENSIDAD)	Chlorophyceae	
Nº células/ml		480	
ESPECIE PREDOMINANTE (DENSIDAD)		Sphaerocystis planctonica	
Nº células/r	nl	424	
CLASE PREDOMINANTE	(BIOVOLUMEN)	Chlorophyceae	
μm³/ml		45531	
ESPECIE PREDOMINANTE (BIOVOLUMEN)		Sphaerocystis planctonica	
μm³/ml		14204	

La concentración de clorofila fue de 0,71 µg/L en la muestra integrada.

La composición de la población fitoplanctónica de la muestra integrada de la zona fótica indicando su abundancia y biovolumen, y la densidad cualitativa de la muestra integrada de fitoplancton del muestreo vertical con red de plancton, muestran los resultados de la tabla 3:

Tabla 3. Composición detallada de la comunidad de fitoplancton.

COD EMP IM	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	µm3/ml	(1 al 5)
	BACILLARIOPHYCEAE/CENTRALES/			
CYCLDELIO Cyclotella delicatula (=Lindavia delicatula)		1	97	
STEPNEOA0	Stephanodiscus neoastraea			1
	BACILLARIOPHYCEAE /PENNALES/			
ACHNMINU0	Achnanthidium minutissimum (=Achnanthes minutissima)	1	16	1
CYMBMINU0	Encyonema minutum (=Cymbella minuta)			1
FRAGIGEN0	Fragilaria sp.	1	172	
HANNARCU0	Hannaea arcus			1
NAVICRYH0	Navicula cryptocephala			1
NITZRECT0	Nitzschia recta			1
	CHRYSOPHYCEAE			
BITRCHOD0	Bitrichia chodatii	2	247	
CHRYOGEN0	Chrysochromulina sp.	16	524	
DINOBAVA0	Dinobryon bavaricum	4	768	1
STICDOED0	Stichogloea doederleinii	5	1.034	1
	SYNUROPHYCEAE			
MALLOVIF0	Mallomonas oviformis (=Mallomonopsis oviformis)	4	9.794	1
	CHLOROPHYTA			
CRUCRECT0	Crucigeniella rectangularis			1
CHLAMGEN0	Chlamydomonas sp.	8	1.470	
ELAKGELA0	Elakatothrix gelatinosa	37	1.549	3
OOCYLACU0	Oocystis lacustris	4	222	
OOCYMARS0	Oocystis marssonii			1
SCENLINE0	Scenedesmus ellipticus (=Scenedesmus linearis)	3	211	
SPHAPLAN0	Sphaerocystis planctonica	424 5	14.204	5
TETRKOMA0			363	1
CRYPTOPHYCEAE				
CRYPEROS0 Cryptomonas erosa		1	1.505	
CRYPROST0	Cryptomonas rostratiformis (=Cryptomonas curvata)	1	3.799	
PLAGLACU0	Plagioselmis (=Rhodomonas) lacustris	66	5.495	
	DINOPHYCEAE			
KATODGEN0	Katodinium sp.	6	4.060	

COD EMB LW	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	μm3/ml	(1 al 5)
	TOTALES BACILLARIOPHYCEAE	2	285	
	TOTALES CHRYSOPHYCEAE	28	2.574	
	TOTALES SYNUROPHYCEAE	4	9.794	
	TOTALES CHLOROPHYTA	480	18.019	
	TOTALES CRYPTOPHYCEAE	68	10.800	
	TOTALES DINOPHYCEAE	6	4.060	
	TOTALES ALGAS	587	45.531	

Nota: Entre paréntesis se cita el anterior nombre de la especie.

Clases de	% de presencia
abundancia	, a de presenta
1	<9
2	10-24
3	25-60
4	61-99
5	>99

4.4. Zooplancton

En el análisis de zooplancton de las muestras del embalse de Cavallers se han identificado un total de 6 especies, distribuidas en los siguientes grupos taxonómicos:

- 2 Copepoda
- 4 Rotifera

La estructura y composición de la comunidad de zooplancton se resume en la tabla 4.

Tabla 4. Estructura y composición de la comunidad de zooplancton.

PARÁMETRO		UNIDAD	VALOR		
PROFUNDIDAD		m	8,0		
DENSIDAD TOTAL		individuos/L	261,23		
BIOMASA TOTAL		μg/L		19,49	
Diversidad S	hannoi	n-Wiener		1,24	
CLASE PREDOMI	NANTE	(DENSIDAD)		Rotíferos	
indiv	iduos/l	L	257,31		
ESPECIE PREDOMINANTE (DENSIDAD)			Kellicotia longispina longispina		
individuos/L			146,73		
CLASE PREDOM	INANTI	E (BIOMASA)	Rotíferos		
ŀ	ıg/L		13,92		
ESPECIE PREDOM	MINANT	ΓΕ (BIOMASA)	Kellicotia longispina longispina		
μg/L			8,07		
COLUMNA AGUA INTEGRADA (red vertical)		0 - 17 m			
CLADÓCEROS: 7,05% COPÉPODOS:		16,18 % ROTÍFEROS : 76,76 %			

La composición detallada de la población zooplanctónica presente en la muestra cuantitativa de zooplancton indicando la densidad y biomasa, y el porcentaje de las especies presentes en la muestra integrada de la red vertical, se muestran en la tabla 5:

Tabla 5. Composición detallada de la comunidad de zooplancton.

CÓDIGO	COMPOSICIÓN	ABUNDANCIA	BIOMASA	PORCENTAJE
TAXÓN ZOOPLANCTON		Ind./L	mg/L	%
	CLADÓCEROS			
DAPHLONG0	Daphnia longispina			2,07
EURYLAME0	Eurycercus lamellatus			3,73
HOLOGIBB0	Holopedium gibberum			1,24
	COPÉPODOS			
CYCLABYS0	Cyclops abyssorum	2,00	1,00	11,20
EUDIVULG0	Eudiaptomus vulgaris	1,92	4,58	4,98
	ROTÍFEROS			
ASPLPRIO0	Asplanchna priodonta			0,41
KELLOLON1	Kellicotia longispina longispina	146,73	8,07	72,20
PLOETRUN0	Ploesoma truncatum	0,38	0,23	
POLYDOLI0	Polyarthra dolichoptera	104,42	5,33	3,32
POLYVULG0	Polyarthra vulgaris			0,83
SYNCKITI0	Synchaeta kitina	5,77	0,29	
	Total Cladóceros			7,05
	Total Copépodos	3,92	5,58	16,18
	Total Rotíferos	257,31	13,92	76,76
	Total	261,23	19,49	100

5. DIAGNÓSTICO DEL GRADO TRÓFICO

Se han considerado los indicadores especificados en la tabla 6 para los valores medios en el embalse, estableciéndose el estado trófico global del embalse según la metodología descrita en la sección 5 de la MEMORIA DEL ESTUDIO.

Tabla 6. Parámetros indicadores y rangos de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (μg P/L)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L) epilimnion	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cel./ml)	<100	100-1000	1000-10000	10000-100000	>100000
VALOR PROMEDIO FINAL	> 4,2	3,4 - 4,2	2,6 - 3,4	1,8 – 2,6	< 1,8

En la tabla 7 se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final.

Tabla 7. Diagnóstico del estado trófico del embalse de Cavallers.

INDICADOR	VALOR	ESTADO TRÓFICO
P TOTAL	2,56	Ultraoligotrófico
CLOROFILA a	0,71	Ultraoligotrófico
DISCO SECCHI	18,0	Ultraoligotrófico
DENSIDAD ALGAL	587	Oligotrófico
ESTADO TROFICO FINAL	4,75	ULTRAOLIGOTRÓFICO

Atendiendo a los criterios seleccionados, fósforo total (PT), concentración de clorofila a y transparencia (DS) clasifican al embalse como ultraoligotrófico. Mientras que la densidad algal determina para el embalse un estado de oligotrofia. Combinando todos los indicadores el estado trófico final para el embalse de CAVALLERS ha resultado ser **ULTRAOLIGOTRÓFICO**.

6. DIAGNOSTICO DEL POTENCIAL ECOLÓGICO

a) Aproximación experimental (PEexp)

Se han considerando los indicadores especificados en la tabla 8, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado a) de la MEMORIA DEL ESTUDIO.

Tabla 8. Parámetros y rangos para la determinación del potencial ecológico experimental.

Indicador	Elementos	Parámetros	Bueno o	superior	Moderado	Deficiente	Malo
		Densidad algal (cel/ml)	< 10 ³		10 ³ -10 ⁴	10 ⁴ -10 ⁵	>10 ⁵
		Biomasa algal, Clorofila <i>a</i> (μg/L)	< 2,5		2,5-8	8,0-25	>25
		Biovolumen algal (mm³/L)	< 0,5		0,5-2	2-8	>8
	Fitoplancton	Phytoplankton Assemblage Index (Q)	> 3		2-3	1-2	<1
Biológico		Trophic Index (TI)	< ;	2,79	2,79-3,52	3,52-4,25	>4,25
		Phytoplankton Trophic Index (PTI)	> 3,4		2,6-3,4	1,8-2,6	<1,8
		Phytoplankton Reservoir Trophic Index (PRTI)	< 6,6		6,6-9,4	9,4-12,2	>12,2
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	<	6,6	6,6-9,4	9,4-12,2	>12,2
	INDICADOR B	OLÓGICO (1)	>3,4		2,6-3,4	1,8 - 2,6	< 1,8
Indicador	Elementos	Parámetros	Muy bueno	Bueno	Moderado	Deficiente	Malo
	Transparencia	Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7
Fisicoguímico	Oxigenación	Concentración O ₂ (mg O ₂ /L)	>8	8-6	6-4	4-2	<2
risicoquiiilico	Nutrientes	Concentración de PT (μg P/L)	0-4	4-10	10-35	35-100	>100
INDICADOR FISICOQUÍMICO (2)		Muy bueno		Moderado			
				3,4-4,2	<3,4		

- (1) La valoración del indicador biológico se obtiene asignando la calificación del elemento de menor puntuación (fitoplancton o zooplancton) o peor calidad, según la metodología *one out, all out*.
- (2) La valoración del indicador fisicoquímico se obtiene asignando la calificación del elemento de menor puntuación o peor calidad, según la metodología *one out, all out*.

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico experimental final sigue el esquema de decisiones indicado en la tabla 9.

Tabla 9. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Experimental		
Bueno o superior	Muy bueno	Bueno o superior		
Bueno o superior	Bueno	Bueno o superior		
Bueno o superior	Moderado	Moderado		
Moderado	Indistinto	Moderado		
Deficiente	Indistinto	Deficiente		
Malo	Indistinto	Malo		

En la tabla 10 se incluye el potencial indicado por cada uno de los parámetros e indicadores, así como la catalogación de la masa de agua según el potencial ecológico final.

Tabla 10. Diagnóstico del potencial ecológico del embalse de Cavallers.

Indicador	Elementos Parámetros		Valor	Potencial	
		Densidad algal (cel/ml)	587	Bueno o superior	
		Clorofila a (µg/L)	0,71	Bueno o superior	
		Biovolumen algal (mm³/L)	0,05	Bueno o superior	
	Fitoplancton	Phytoplankton Assemblage Index (Q)	3,48	Bueno o superior	
Biológico		Phytoplankton Trophic Index (PTI)	3,58	Bueno o superior	
		Trophic Index (TI)	2,30	Bueno o superior	
		Phytoplankton Reservoir Trophic Index (PRTI)	8,69	Moderado	
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	3,27	Bueno o superior	
	INDICADOR BIOLÓGICO				
	Transparencia	Disco de Secchi (m)	18,0	Muy bueno	
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	10,26	Muy bueno	
	Nutrientes	Concentración de PT (µg P/L)	2,56	Muy bueno	
	INDICAL	5,0	MUY BUENO		
	POTENCIAL ECOLÓGICO				

b) Aproximación normativa (PEnorm)

Se han considerado los indicadores, los valores de referencia y los límites de clase B⁺/M (Bueno o superior/Moderado), M/D (Moderado/Deficiente) y D/M (Deficiente/Malo), así como sus ratios de calidad ecológica (RCE), especificados en las tablas 11 y 12, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado b) de la MEMORIA DEL ESTUDIO.

Tabla 11. Valores de referencia propios del tipo (VR_t) y límites de cambio de clase de potencial ecológico de los indicadores de los elementos de calidad de embalses (RD 817/2015).

The Floor		D	In Partie	\/D	B⁺/M	M/D	D/M
Tipo	Elemento	Parámetro	Indicador	VR _t	(RCE)	(RCE)	(RCE)
		Piomosa	Clorofila a mg/m ³	2,00	0,211	0,14	0,07
Tine 4	Fitanlanatan	Biomasa	Biovolumen mm ³ /L	0,36	0,189	0,126	0,063
Tipo 1	Fitoplancton	Commonición	Índice de Catalán (IGA)	0,10	0,974	0,649	0,325
		Composición	Porcentaje de cianobacterias	0,00	0,908	0,607	0,303
		D:	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Ti 7	Fita allamata a	Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 7	Fitoplancton	Commonición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Diamana	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Ti 0	Tipo 9 Fitoplancton	Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 9		Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa n Composición	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Ti 40	Fitoplancton		Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 10			Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Ti 44	- :		Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 11	Fitoplancton	Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m ³	2,40	0,195	0,13	0,065
Tipo 12	Fitanlanatan	Biomasa	Biovolumen mm ³ /L	0,63	0,175	0,117	0,058
	Fitoplancton	Composición	Índice de Catalán (IGA)	1,50	0,929	0,619	0,31
			Porcentaje de cianobacterias	0,10	0,686	0,457	0,229
		Biomasa Composición	Clorofila a mg/m ³	2,10	0,304	0,203	0,101
Tin - 40	Fitanian at		Biovolumen mm ³ /L	0,43	0,261	0,174	0,087
Tipo 13	ritopiancton		Índice de Catalán (IGA)	1,10	0,979	0,653	0,326
			Porcentaje de cianobacterias	0,00	0,931	0,621	0,31

Tabla 12. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.

			RANGOS DEL RCE					
Indicador	Elementos	Parámetros	Bueno o superior		Moderado	Deficiente	Malo	
		Clorofila a (µg/L)	≥	≥ 0,304		0,202 - 0,101	< 0,101	
5		Biovolumen algal (mm³/L)	≥ 0,261		0,260 - 0,174	0,173 – 0,087	< 0,087	
Biológico	Fitoplancton	Índice de Catalán (IGA)	≥	≥ 0,979 0,978 – 0,653		0,652 - 0,326	< 0,326	
		Porcentaje de cianobacterias	≥	0,931	0,930 - 0,621	0,620 - 0,31	< 0,31	
		Bueno	o superior	Moderado	Deficiente	Malo		
INDICADOR BIOLÓGICO			;	- 0,6	0,4-0,6	0,2-0,4	< 0,2	
			T					
			RANGOS DE VALORES					
Indicador	Elementos	Parámetros	Muy bueno	Bueno	Moderado	Deficiente	Malo	
	Transparencia	Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7	
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	>8	8-6	6-4	4-2	<2	
	Nutrientes	Concentración de PT (µg P/L)	0-4	4-10	10-35	35-100	>100	
				BUENO	ı	MODERADO		
	INDICADOR FISICOQUÍMICO			3,4-4,2		<3,4		

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico normativo final sigue el esquema de decisiones indicado en la tabla 13.

Tabla 13. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Experimental		
Bueno o superior	Muy bueno	Bueno o superior		
Bueno o superior	Bueno	Bueno o superior		
Bueno o superior	Moderado	Moderado		
Moderado	Indistinto	Moderado		
Deficiente	Indistinto	Deficiente		
Malo	Indistinto	Malo		

En la tabla 14 se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico final (*PEnorm*) tras pasar el filtro del indicador fisicoquímico.

Tabla 14. Diagnóstico del potencial ecológico (PEnorm) del embalse de Cavallers.

Indicador	Elementos	Parámetro	Indicador	Valor	RCE	RCET	PEnorm	
		Biomasa	Clorofila a (µg/L)	0,71	2,98	2,14	Bueno o superior	
			Biovolumen algal (mm ³ /L)	0,05	9,44	5,57	Bueno o superior	
			Media			3,85		
Biológico	Fitoplancton		Índice de Catalán (IGA)	1,37	0,999	0,99	Bueno o superior	
		Composición	Porcentaje de cianobacterias	0,00	1,00	1,00	Bueno o superior	
			Media			0,99		
	Media global					2,42		
	INDICADOR BIOLÓGICO				2,42		BUENO O SUPERIOR	
Indica	ador	Elementos	Indicador	,	Valor PEr			
	Т	ransparencia	Disco de Secchi (m)		18,0		Muy bueno	
Fisicoquímico	Fisicoquímico Oxige		O ₂ hipolimnética (mg O ₂ /L)	10,26			Muy bueno	
Nutrientes Concentración de PT (µg P/L)					2,56		Muy bueno	
	INDICADOR FISICOQUÍMICO				5		MUY BUENO	
	POTENCIAL ECOLÓGICO PEnorm				BUEN	O O SUPE	RIOR	

ANEXO I. REPORTAJE FOTOGRÁFICO

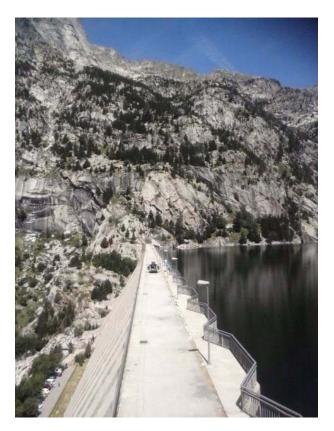


Figura 5. Vista de la presa del embalse

Figura 6. Vista de la cola del embalse