ANÁLISIS DE SERIES NO ALTERADAS POTENCIAL VARIACIÓN DE LA APORTACIÓN HÍDRICA DEBIDA A CAMBIOS EN EL USO DEL SUELO ENTRE 1990 Y 2018.

METODOLOGÍA Y DISCUSIÓN DE RESULTADOS

ANEXO

FICHA DE CONTROL DE DOCUMENTACIÓN

PROYECTO:

ANÁLISIS DE ALTERACIONES EN EL RÉGIMEN HIDROLÓGICO NATURAL DE LAS ESTACIONES DE AFORO EN LA CUENCA DEL EBRO. EXP 066/21-S

CÓDIGO DEL PROYECTO: 23247

HOJA: 1 de 1

TÍTULO DEL DOCUMENTO:

ANÁLSIS DE LA POTENCIAL VARIACIÓN DE LA APORTACIÓN HÍDRICA DEBIDA A CAMBIOS EN EL USO DEL SUELO ENTRE 1990 Y

2018. METODOLOGÍA Y ANÁLISIS DE RESULTADOS

CÓDIGO DEL DOCUMENTO:

Versión	Fecha	Autor	Creado Revisado Aprobado	Notas
Ed00	8-2-2023	Andres Diaz	Creado	Análisis territorial
Ed01	12-7-2023	Víctor Pinilla	Creado Revisado	Análisis hidrológico. Conclusiones
Ed02	22/9/2023	Víctor Pinilla	Revisión	Ajustes finales de texto y mejora de algunas figuras

ÍNDICE

<u>1.</u>		OBJETIV	0	<u>1</u>
2.		PLANTE	AMIENTO METODOLÓGICO	2
	2.1.	. El mod	elo de transformación Precipitación Aportación SIMPA	2
			ción del excedente total	
			ción del parámetro H _{max}	
<u>3.</u>		<u>EVALUA</u>	CIÓN DE LOS CAMBIOS DE USOS DEL TERRITORIO Y SU REPERCUSIÓN EN EL	
		PARÁME	TRO H _{MAX}	7
	3.1.	. Datos o	de partida	7
	3.2.	Reclasi	ficación	7
		3.2.1.	Usos del suelo del CORINE Land Cover	7
		3.2.2.	Pendientes y texturas del suelo	11
		3.2.3.	Reclasificación del parámetro H _{max}	11
		3.2.4.	Reclasificación del código de H _{max}	13
	3.3.	. Tabula	ción cruzada de H _{max} entre 1990 y 2018	13
4		ECTINA A C	CIÓN DE LA MODIFICACIÓN DE LA APORTACIÓN GLOBAL EN LA CUENCA DEL	
<u>4.</u>				40
		EBRO DE	BIDA AL CAMBIO DE USOS DEL SUELO	<u>18</u>
<u>5.</u>		ESTUDIO	EN SUBCUENCAS SELECCIONADAS	21
	5.1.	Análisi	s hidrológico	22
	5.2.	Cambio	os en los usos del suelo	26
		5.2.1.	Subcuenca del río Bergantes hasta la estación 9031	26
		5.2.2.	Subcuenca del río Ara hasta la estación 9040	
		5.2.3.	Subcuenca del río Linares hasta la estación 9043	35
		5.2.4.	Subcuenca del río Isábena hasta la estación 9047	39
		5.2.5.	Subcuenca del río Jalón hasta la estación 9058	43
		5.2.6.	Subcuenca del río Salazar hasta la estación 9064	47
		5.2.7.	Subcuenca del río Fortanete hasta la estación 9088	51
		5.2.8.	Subcuenca del río Híjar hasta la estación 9203	55
	5.3.	. Relació	n entre los cambios de uso y las aportaciones	59
6		CONCILI	SIONES V TRABAIOS FUTUROS	61

Índice de figuras

Figura 1.	Ley de cálculo del excedente total aplicada en SIMPA	.3
Figura 2.	Mapa reclasificado de usos del suelo CLC 1990	.9
Figura 3.	Mapa reclasificado de usos del suelo CLC 2018	10
Figura 4.	Mapa de H _{max} en la DHE en 1990	16
Figura 5.	Mapa de H _{max} en la DHE en 2018	16
Figura 6.	Mapa de cambio de H _{max} entre 1990 y 2018	17
Figura 7.	Ejemplos de variación del excedente total de agua con la modificación de H _{max}	
(valores en mm)	18
Figura 8.	Subcuencas seleccionadas	21
Figura 9.	Comparación de la serie de aportación registrada en la estación 9031 Río Bergantes	S
en Zorita con la	simulada mediante SIMPA	22
Figura 10.	Comparación de la serie de aportación registrada en la estación 9040 Río Ara en	
Boltaña con la s	simulada mediante SIMPA	23
Figura 11.	Comparación de la serie de aportación registrada en la estación 9043 Río Linares en	า
San Pedro Man	rique con la simulada mediante SIMPA	23
Figura 12.	Comparación de la serie de aportación registrada en la estación 9047 Río Isábena e	n
Capella con la s	imulada mediante SIMPA	24
Figura 13.	Comparación de la serie de aportación registrada en la estación 9058 Río Jalón en	
Jubera con la si	mulada mediante SIMPA	24
Figura 14.	Comparación de la serie de aportación registrada en la estación 9064 Río Salazar en	า
Aspurz con la si	mulada mediante SIMPA	25
Figura 15.	Comparación de la serie de aportación registrada en la estación 9088 Río Fortanete	ž
en Pitarque cor	la simulada mediante SIMPA	25
Figura 16.	Comparación de la serie de aportación registrada en la estación 9203 Río Hijar en	
Reinosa con la s	simulada mediante SIMPA	26
Figura 17.	Usos del suelo en la subcuenca del río Bergantes hasta la estación 9031 en el año	
1990		27
Figura 18.	Usos del suelo en la subcuenca del río Bergantes hasta la estación 9031 en el año	
2018		28
Figura 19.	Ganancias vs pérdidas en la subcuenca del río Bergantes hasta la estación 9031 ent	re
los años 1990 y	2018	30
Figura 20.	Usos del suelo en la subcuenca del río Ara hasta la estación 9040 en el año 1990	32
Figura 21.	Usos del suelo en la subcuenca del río Ara hasta la estación 9040 en el año 2018	32
Figura 22.	Ganancias vs pérdidas en la subcuenca del río Ara hasta la estación 9040 entre los	
años 1990 y 20	18	
Figura 23.	Usos del suelo en la subcuenca del río Linares hasta la estación 9043 en el año 1990	
		36
Figura 24.	Usos del suelo en la subcuenca del río Linares hasta la estación 9043 en el año 2018	3.
		36
Figura 25.	Ganancias vs pérdidas en la subcuenca del río Linares hasta la estación 9043 entre	
los años 1990 y	2018	
Figura 26.	Usos del suelo en la subcuenca del río Isábena hasta la estación 9047 en el año 199	0
		40

SEPARATA Índice - Pág. ii de v

Figura 27.	Usos del suelo en la subcuenca del río Isábena hasta la estación 9047 en el año 201840
Figura 28.	Ganancias vs pérdidas en la subcuenca del río Isábena hasta la estación 9047 entre
los años 1990 y	201842
Figura 29.	Usos del suelo en la subcuenca del río Jalón hasta la estación 9058 en el año 1990.44
Figura 30.	Usos del suelo en la subcuenca del río Jalón hasta la estación 9058 en el año 2018.44
Figura 31.	Ganancias vs pérdidas en la subcuenca del río Jalón hasta la estación 9058 entre los
años 1990 y 20:	
Figura 32.	Usos del suelo en la subcuenca del río Salazar hasta la estación 9064 en el año 1990.
	48
Figura 33.	Usos del suelo en la subcuenca del río Salazar hasta la estación 9064 en el año 2018 .
	48
Figura 34.	Ganancias vs pérdidas en la subcuenca del río Salazar hasta la estación 9064 entre
los años 1990 y	[,] 201850
Figura 35.	Usos del suelo en la subcuenca del río Fortanete hasta la estación 9088 en el año
1990	52
Figura 36.	Usos del suelo en la subcuenca del río Fortanete hasta la estación 9088 en el año
2018	52
Figura 37.	Ganancias vs pérdidas en la subcuenca del río Fortanete hasta la estación 9088 entre
los años 1990 y	201854
Figura 38.	Usos del suelo en la subcuenca del río Híjar hasta la estación 9203 en el año 1990.56
Figura 39.	Usos del suelo en la subcuenca del río Híjar hasta la estación 9203 en el año 2018.56
Figura 40.	Ganancias vs pérdidas en la subcuenca del río Híjar hasta la estación 9203 entre los
años 1990 y 20:	1858

SEPARATA Índice - Pág. iii de v

Índice de tablas

Tabla 1. Grupos de usos de suelo reclasificados de CORINE Land Cover 2000 aplicados en SIN 2019	
Tabla 2. Grupos de texturas de suelos aplicados en SIMPA 2019	
Tabla 3. Grupos pendientes aplicados en SIMPA 2019	
Tabla 4. Reclasificación del parámetro H _{max} en función de los usos del suelo, las texturas de s y las pendientes, aplicados en SIMPA 2019	uelos
Tabla 5. Grupos de usos de suelo reclasificados de CORINE Land Cover. Años 1990 y 2018	
Tabla 6. Comparación de la reclasificación del CLC 1990 y 2018 con respecto a CLC 2000	
Tabla 7. Tabulación cruzada de usos del suelo en la cuenca del Ebro entre 1990 y 2018 (supe	rficie
en hectáreas)	10
Tabla 8. Balance de usos del suelo en la cuenca del Ebro entre 1990 y 2018 (superficie en	
hectáreas)	
Tabla 9. Clasificación de pendientes	11
Tabla 10. Clasificación de texturas del suelo	
Tabla 11. Tabla de evaluación de H_{max} según los usos de suelo, la pendiente y la textura, utili	
en el presente estudio	
Tabla 12. Reclasificación del código de H _{max}	13
Tabla 13. Tabulación cruzada de clases de H _{max} en la DHE entre 1990 y 2018 (superficie en	
hectáreas)	
Tabla 14. Balance de cambios de H _{max} en la DHE entre 1990 y 2018	
Tabla 15. Excedente según valores de H _{max} representativos de las clases consideradas	18
Tabla 16. Estimación de la variación de la aportación entre 1990 y 2018 atribuible a cambios	
usos del suelo en la cuenca del Ebro (hm³/año)	
Tabla 17. Estaciones de aforo de las subcuencas seleccionadas	
Tabla 18. Tabulación cruzada de usos de suelo en la subcuenca del río Bergantes hasta la est	
9031 (superficie en hectáreas)	
Tabla 19. Balance de usos del suelo entre 1990 y 2018 en la subcuenca del río Bergantes has	
estación 9031 (hectáreas)	
Tabla 20. Tabulación cruzada de clases de H _{max} en la subcuenca del río Bergantes hasta la est	
9031 (superficie en hectáreas)	
Tabla 21. Balance de cambios de H _{max} en la subcuenca del río Bergantes hasta la estación 903	
Tabla 22. Tabulación cruzada de usos de suelo en la subcuenca del río Ara hasta la estación S	
(superficie en hectáreas)	
Tabla 23. Balance de usos del suelo entre 1990 y 2018 en la subcuenca del río Ara hasta la es	
9040 (hectáreas)	
Tabla 24. Tabulación cruzada de clases de H _{max} en la subcuenca del río Ara hasta la estación 9	
(superficie en hectáreas)	
Tabla 25. Balance de cambios de H _{max} en la subcuenca del río Ara hasta la estación 9040	
Tabla 26. Tabulación cruzada de usos de suelo en la subcuenca del río Linares hasta la estaci	
9043 (superficie en hectáreas)	
Tabla 27. Balance de usos del suelo entre 1990 y 2018 en la subcuenca del río Linares hasta l	
estación 9043 (hectáreas)	
Tabla 28. Tabulación cruzada de clases de H _{max} en la subcuenca del río Linares hasta la estaci	
9043 (superficie en hectáreas)	
Tabla 29. Balance de cambios de Hmax en la subcuenca del río Linares hasta la estación 9043	3 38

SEPARATA Índice - Pág. iv de v

Tabla 30. Tabulación cruzada de usos de suelo en la subcuenca del río Isábena hasta la estación
9047 (superficie en hectáreas)39
Tabla 31. Balance de usos del suelo entre 1990 y 2018 en la subcuenca del río Isábena hasta la
estación 9047 (hectáreas)
Tabla 32. Tabulación cruzada de clases de H _{max} en la subcuenca del río Isábena hasta la estación
9047 (superficie en hectáreas)41
Tabla 33. Balance de cambios de H _{max} en la subcuenca del río Isábena hasta la estación 904742
Tabla 34. Tabulación cruzada de usos de suelo en la subcuenca del río Jalón hasta la estación 9058
(superficie en hectáreas)43
Tabla 35. Balance de usos del suelo entre 1990 y 2018 en la subcuenca del río Jalón hasta la
estación 9058 (hectáreas)
Tabla 36. Tabulación cruzada de clases de H _{max} en la subcuenca del río Jalón hasta la estación 9058
(superficie en hectáreas)45
Tabla 37. Balance de cambios de H _{max} en la subcuenca del río Jalón hasta la estación 905846
Tabla 38. Tabulación cruzada de usos de suelo en la subcuenca del río Salazar hasta la estación
9064 (superficie en hectáreas)47
Tabla 39. Balance de usos del suelo entre 1990 y 2018 en la subcuenca del río Salazar hasta la
estación 9064 (hectáreas)47
Tabla 40. Tabulación cruzada de clases de H _{max} en la subcuenca del río Salazar hasta la estación
9064 (superficie en hectáreas)49
Tabla 41. Balance de cambios de H _{max} en la subcuenca del río Salazar hasta la estación 906450
Tabla 42. Tabulación cruzada de usos de suelo en la subcuenca del río Fortanete hasta la estación
9088 (superficie en hectáreas)51
Tabla 43. Balance de usos del suelo entre 1990 y 2018 en la subcuenca del río Fortanete hasta la
estación 9088 (hectáreas)51
Tabla 44. Tabulación cruzada de clases de H _{max} en la subcuenca del río Fortanete hasta la estación
9088 (superficie en hectáreas)53
Tabla 45. Balance de cambios de H _{max} en la subcuenca del río Fortanete hasta la estación 9088 54
Tabla 46. Tabulación cruzada de usos de suelo en la subcuenca del río Híjar hasta la estación 9203
(superficie en hectáreas)55
Tabla 47. Balance de usos del suelo entre 1990 y 2018 en la subcuenca del río Híjar hasta la
estación 9203 (hectáreas)55
Tabla 48. Tabulación cruzada de clases de H _{max} en la subcuenca del río Híjar hasta la estación 9203
(superficie en hectáreas)57
Tabla 49. Balance de cambios de H _{max} en la subcuenca del río Híjar hasta la estación 920358
Tabla 50. Resumen de la variación teórica de la aportación según cambios de uso del suelo y
comparación con el registro hidrométrico en las subcuencas seleccionadas59

SEPARATA Índice - Pág. v de v

1. OBJETIVO

El objetivo de este apartado es estudiar la potencial variación de las aportaciones de agua en régimen natural. En particular se analizan posibles variaciones asociadas a los cambios de uso del territorio.

El cambio de uso del suelo se ha evaluado utilizando imágenes satelitales en una ventana temporal que va desde 1990 a 2018, que es la máxima que se puede manejar con datos relativamente homogéneos procedentes de trabajos de interpretación de imágenes de satélite.

En este análisis, la variación de la aportación total media que se asocia directa y únicamente a variaciones en los usos del suelo se conceptualiza siguiendo el planteamiento de la ley de excedente utilizada en el modelo de SIMulación Precipitación Aportación, ampliamente utilizado en planificación hidrológica, denominado SIMPA, desarrollado por el CEDEX, y que ya tiene en cuenta las variaciones habidas en precipitación y evapotranspiración por razones climatológicas. Este planteamiento conlleva necesariamente a integrar en el estudio el análisis de la pendiente del terreno y la textura del suelo.

Se considera tanto el conjunto de la demarcación como una selección de cuencas vertientes a estaciones de aforo en las que la modificación del régimen hidrológico debida a extracción de agua o a su regulación se puede considerar despreciable.

SEPARATA Índice - Pág. 1 de 63

2. PLANTEAMIENTO METODOLÓGICO

2.1. El modelo de transformación Precipitación Aportación SIMPA

El Centro de Estudios Hidrográficos del CEDEX ha venido evaluando los recursos hídricos de España en colaboración con las Oficinas de Planificación Hidrológica de los Organismos de Cuenca, mediante trabajos que ya alcanzan una larga tradición en el contexto de la planificación hidrológica y que siguen en continua actualización y mejora.

La herramienta utilizada para ello es SIMPA, que integra un modelo hidrológico conceptual de simulación continua de cuenca, cuasi distribuido, de paso mensual, diseñado para evaluar los recursos hídricos en régimen natural, basado conceptualmente en el modelo agregado de Témez (Témez, J.R., 1977).

El modelo funciona realizando balances hídricos con paso mensual en cada celda en la que se divide el territorio: celdas de 500 m x 500 m, en la versión de SIMPA utilizada para los planes hidrológicos del ciclo de 2022-2027, a la que se denomina en adelante SIMPA 2019.

Las variables de entrada al modelo son la precipitación (P_i) y evapotranspiración potencial (ETP_i). Las variables de salida son: humedad del suelo, evapotranspiración real, recarga a los acuíferos, escorrentía superficial, escorrentía subterránea y aportación total. Se realiza un contraste para comparar los valores simulados de aportación total con los datos observados en una serie de puntos de control, con objeto de ajustar la simulación mediante la calibración de los parámetros del modelo hidrológico.

2.2. Evaluación del excedente total

El excedente mensual, T_i, es la parte de precipitación, P_i que no queda almacenada en el suelo a disposición de la ETP_i. Se descompone en una parte que discurre directamente en superficie, integrándose en la aportación del mes en cuestión, y otra que infiltra hasta el acuífero, y que sumará a la aportación total con un cierto decalaje que depende del comportamiento de los acuíferos implicados. En todo caso el excedente calculado viene a corresponder en periodos largos de tiempo con la aportación total.

El excedente T_i, se calcula de la siguiente manera:

Si
$$T_i \leq P_0$$
 $T_i = 0$
$$T_i = \frac{P_i - P_0}{P_i - \delta - 2 \, P_0}$$
 donde:
$$\delta = H_{max} - H_{i-1} + ETP_i$$

$$P_0 = C(H_{max} - H_{i-1})$$
 umbral de escorrentía siendo:

 H_{max} : capacidad máxima de almacenamiento de agua en el suelo, H_{i-1} : almacenamiento de agua en el suelo en el mes precedente, C: parámetro adimensional (valores en torno a 0,30 -Témez, 1977-)

SEPARATA Índice - Pág. 2 de 63

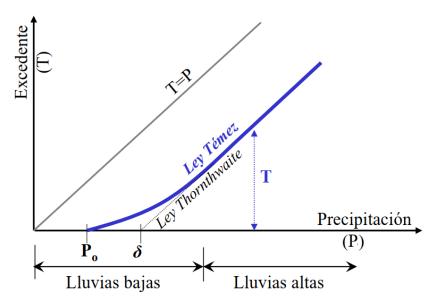


Figura 1. Ley de cálculo del excedente total aplicada en SIMPA

2.3. Evaluación del parámetro H_{max}

El parámetro capacidad máxima de almacenamiento de agua en el suelo, H_{max} , corresponde conceptualmente al agua que como máximo puede contener un suelo y cuyo destino final será la atmósfera a través de la evapotranspiración. A mayor H_{max} menor será la aportación obtenida.

H_{max}, junto con el parámetro C, coeficiente de excedente, se relaciona directamente con la cantidad de aportación total que se obtiene para unas series de precipitación y evapotranspiración potencial dadas.

El presente análisis, se centra en las variaciones de los usos del suelo y su repercusión en la aportación ya que le resto de condicionantes considerados en la conceptualización del modelo SIMPA (pendientes y texturas del suelo) se consideran invariables a esta escala temporal.

La variación del parámetro C, sigue un mecanismo análogo a de H_{ma} , si bien su repercusión sobre la cantidad de aportación final es significativamente más limitada que la de H_{max} , razón por la cual no se considera para los análisis posteriores.

Los valores de H_{max} en cada celda del modelo se han obtenido de la combinación de la información de los mapas de usos de suelo, de texturas y pendientes.

Los usos del suelo, en la aplicación de SIMPA 2019, proceden del CORINE LAND COVER 2000 (IGN, 2004) reclasificado en 8 grupos, tal y como se muestra en la tabla adjunta.

SEPARATA Índice - Pág. 3 de 63

Tabla 1. Grupos de usos de suelo reclasificados de CORINE Land Cover 2000 aplicados en SIMPA 2019

Clase Descripción de los usos de suelo CORINE CORINE Land Cover		F	Reclasiflcación a los Grupos de usos de suelo		
21100	Tierras de labor de secano		34610		
24110	Asociación de cultivos permanentes en secano	1			
24210					
24212	Mosaico de cultivos permanentes en secano	1	Cultivos de secano		
24230	Mosaico de cultivos mixtos en secano	1			
24310	Mosaico de cultivos agrícolas en secano	1			
24213	Mosaico de cultivos anuales	9	Mosaico de cultivos permanentes		
21200	Terrenos regados permanentemente		,		
22100	Viñedos	1			
23100	Prados y praderas	1			
24120	Asociación de cultivos permanentes en regadío	1			
24211	Mosaico de cultivos anuales con praderas	1			
24220	Mosaico de cultivos en regadío		5 1		
24221	Mosaico de cultivos anuales con praderas	3	Pastizales, regadíos y viñedos		
24222	Mosaico de cultivos permanentes en regadío				
24223	Mosaico de cultivos anuales				
24320	Mosaico de cultivos agrícolas en regadío				
24330					
32100	Pastizales naturales				
22200	Frutales				
22300	Olivares				
24400	Sistemas agroforestales		Natawalas hassussus funtales		
31160	Laurisilva macaronesia	4	Matorrales, bosques y frutales		
31200	Bosques de coniferas				
32	Matorrales y/o asociaciones de vegetación herbácea				
31100	Bosques de frondosas	5	Bosques maduros		
31300	Bosque Mixto	٥	Bosques maduros		
11	Tejido Urbano				
12	Zonas industriales, comerciales y de transporte	6	7		
13	Zonas de extracción minera, vertidos y de	0	Zonas urbanas e impermeable		
14	Zonas verdes artificiales, no agrícolas				
33	Espacios abiertos con escasa o sin vegetación		Suelos sin vegetación		
21300	Arrozales				
41	42 Zonas húmedas litorales 51 Aguas continentales		Humedales y superficies de		
42					
51					
52	Aguas marinas				

Las texturas de suelos se han obtenido mayoritariamente de la información geológica de la Base de Datos "Propiedades Edafológicas de los Suelos Españoles" (CIEMAT, 2000) en la que se asigna un porcentaje de arenas, limos y arcillas a una serie de perfiles de muestreo en la península ibérica. Esa información se reclasifica en 5 grupos.

SEPARATA Índice - Pág. 4 de 63

Tabla 2. Grupos de texturas de suelos aplicados en SIMPA 2019

Thorn-Matter (1957)	Textura (USDA)
Arenosa fina	Arenosa
Franco-arenosa fina	Franco arcillo arenosa Arenoso franca Franco arenosa
Franco-limosa	Limosa Franco limosa Slecgeo (clase 123-12)
Franco-arcillosa	Franco arcillo limosa Franco arcillosa Franca
Arcillosa	Arcillo limosa Arcillo arenosa Arcillo limosa

El mapa de pendientes ha sido derivado del MDE a resolución 500 m, obtenido a partir del mapa del IGN a escala 1:25.000 (IGN, 2014). Se han considerado 8 clases de pendientes.

Tabla 3. Grupos pendientes aplicados en SIMPA 2019

Pendiente	Clase
< 0,5	1
0,5 a 1	2
1 a 2	3
2 a 4	4
4 a 7	5
7 a 10	6
10 a 14	7
≥ 14	8

La tabla siguiente detalla los valores de H_{max} asignados en función de las pendientes, texturas y los usos de suelo.

SEPARATA Índice - Pág. 5 de 63

Tabla 4. Reclasificación del parámetro H_{max} en función de los usos del suelo, las texturas de suelos y las pendientes, aplicados en SIMPA 2019

		Usos del suelo							
Textura	Pendiente	Cultivos de secano	Mosaico de cultivos permanentes	Pastizales, regadíos y viñedos	Matorrales, bosques y frutales	Bosques maduros	Zonas urbanas e impermeable	Suelos sin vegetación	Humedales y superficies de agua libre
	1	145	150	170	210	250	100	140	1000
	2	140	145	160	200	220	100	120	1000
	3	135	140	150	190	210	100	100	1000
	4	130	135	140	180	200	100	80	1000
Arenosa Fina	5	90	95	100	150	160	50	60	1000
	6	50	95 55	70	130	140	50	40	1000
	7	10	35			70	25		
		5	5	50 5	60 7	10	25 	20 5	1000
	8								1000
	1	220	220	230	240	260	110	220	1000
	2	200	200	220	220	230	110	210	1000
	3	170	170	220	220	230	110	200	1000
Franco-	4	160	160	200	200	200	110	180	1000
Arenosa fina	5	100	120	190	190	200	50	140	1000
	6	30	80	100	110	130	50	120	1000
	7	15	30	60	75	75	25	75	1000
	8	5	5	5	10	10	5	5	1000
	1	240	250	300	310	400	120	240	1000
	2	230	230	260	270	350	120	225	1000
	3	215	215	240	240	310	120	210	1000
Franco-	4	200	200	210	210	240	120	190	1000
Limosa	5	170	170	180	190	230	50	150	1000
	6	60	100	130	130	130	50	130	1000
	7	30	50	75	80	80	25	80	1000
	8	5	5	5	10	30	5	5	1000
	1	230	250	260	265	320	110	220	1000
	2	190	240	245	255	300	110	210	1000
	3	155	210	240	245	250	110	200	1000
Franco-	4	145	180	230	235	240	110	180	1000
Arcillosa	5	120	140	180	190	230	50	140	1000
	6	60	80	90	125	140	50	120	1000
	7	25	35	35	60	70	25	75	1000
	8	5	5	5	10	20	5	5	1000
	1	160	220	250	260	270	100	180	1000
	2	150	210	230	240	250	100	170	1000
	3	140	190	210	220	230	100	160	1000
	4	120	150	190	200	220	100	150	1000
Arcillosa	5	90	130	140	180	190	50	75	1000
-	6	40	100	110	140	150	50	50	1000
	7	20	35	50	60	70	25	25	1000
	8	5	5	5	7	10	5	5	1000

Estos valores se modificaron localmente para tener en cuenta peculiaridades climáticas como el índice de aridez para obtener finalmente el mapa de H_{max} .

SEPARATA Índice - Pág. 6 de 63

3. EVALUACIÓN DE LOS CAMBIOS DE USOS DEL TERRITORIO Y SU REPERCUSIÓN EN EL PARÁMETRO H_{MAX}

Se pretende crear una capa ráster de usos del suelo debidamente reclasificados, para cada año que se compara (1990 y 2018) de modo que, junto con la capa ráster de la textura de suelo y la de pendientes, permitan calcular sendos mapas de H_{max} representativos de los usos del suelo en 1990 y 2018.

3.1. Datos de partida

CORINE Land Cover

Mapa de ocupación del suelo a escala 1:100.000 de los años 1990 y de 2018 en formato ráster con un tamaño de píxel de 100 metros de lado.

Fuente: https://land.copernicus.eu/pan-european/corine-land-cover

Pendientes

Mapa en formato ráster con un tamaño de píxel de 500 metros de lado y 8 clases de pendiente derivado del MDE de 500 metros del IGN.

Fuente: SIMPA 2019, CEDEX.

Textura del suelo

Mapa en formato ráster con un tamaño de píxel de 1.000 metros de lado y 5 clases de textura (Thornthwaite-Mather, 1957).

Fuente: SIMPA 2019, CEDEX.

3.2. Reclasificación

Para la creación de las capas ráster de H_{max} para 1990 y 2018, el primer paso es reclasificar los ráster de partida: CLC de los años 1990 y 2018, pendientes y texturas.

3.2.1. Usos del suelo del CORINE Land Cover

Los usos del suelo fueron considerados en SIMPA 2019 con base en el CORINE Land Cover (CLC) del año 2000, que dispone de una clasificación en 5 niveles de desagregación. Sin embargo, el CLC de los años 1990 y 2018 solo ofrecen una desagregación de 3 niveles. En consecuencia, el primer paso ha sido reclasificar los mapas de los años 1990 y 2018 para acercarse lo más posible a la reclasificación que se utilizó en SIMPA 2019. El resultado se muestra en la tabla siguiente.

SEPARATA Índice - Pág. 7 de 63

Tabla 5. Grupos de usos de suelo reclasificados de CORINE Land Cover. Años 1990 y 2018

Leyenda CORI	NE Land Cover	Reclasificación en 7	
	1.1.1. Tejido urbano continuo	categorías	
	1.1.2. Tejido urbano discontinuo		
	1.2.1. Industriales y comerciales		
	1.2.2. Redes viarias, ferroviarias y		
	asociadas		
	1.2.3. Zonas portuarias		
Superficies artificiales	1.2.4. Aeropuertos	1. Superficies artificiales	
1. Superficies artificiales	1.3.1. Extracción minera	1. Superficies artificiales	
	1.3.2. Escombreras		
	1.3.3. Zonas en construcción		
	1.4.1. Zonas verdes urbanas		
	1.4.2. Instalaciones deportivas y		
	recreativas		
	2.1.1. Secano		
	2.1.2. Regadío permanente		
	2.1.2. Regaulo permanente 2.1.3. Arrozales		
	2.2.1. Viñedos		
	2.2.1. Villeuos 2.2.2. Frutales		
	2.2.3. Olivares		
Zonas agrícolas		Superficies agrícolas	
	2.3.1. Pastos permanentes 2.4.1. Cultivos ocasionales con		
	permanentes 2.4.2. Cultivos mixtos		
	2.4.3. Zonas mixtas		
	2.4.4. Explotación agroforestal		
	3.1.1. Bosque de frondosas		
	3.1.2. Bosque de nondosas	5. Bosques	
	3.1.3. Bosque mixto	3. Bosques	
	3.2.1 Prados permanentes	2 Drades permanentes	
	3.2.2. Landas y matorrales	3. Prados permanentes	
3. Zonas forestales, con vegetación	3.2.3. Vegetación esclerófila	4. Matorrales	
natural y	3.2.4. Zona arbustiva de transición	4. Matorrales	
espacios abiertos		7. 04:00	
	3.3.1. Playas, dunas y arenales	7. Otros	
	3.3.2. Canchales y roquedos	6. Canchales, roquedos y	
	3.3.3. Zonas con vegetación escasa	vegetación escasa	
	3.3.4. Zonas quemadas		
	3.3.5. Glaciares y nieves permanentes		
	4.1.1. Humedales y zonas pantanosas		
4 7	4.1.2. Turberas	_	
4. Zonas húmedas	4.2.1. Marismas		
	4.2.2. Salinas	7.0	
	4.2.3. Zonas llanas intermareales 7. Otros		
	5.1.1. Cursos de agua		
	5.1.2. Láminas de agua		
5. Superficies de agua	5.2.1. Lagunas costeras	_	
	5.2.2. Estuarios		
	5.2.3. Mares y océanos		

En la tabla adjunta se compara la reclasificación utilizada en el presente estudio con la que se utilizó en SIMPA 2019 para la estimación del H_{max} .

SEPARATA Índice - Pág. 8 de 63

Tabla 6. Comparación de la reclasificación del CLC 1990 y 2018 con respecto a CLC 2000

Re	clasificación u	tilizada en el estudio actual		
nº clase (valor del píxel)	Abreviatura	Nombre completo	Reclasificación utilizada en SIMPA 2019	
700	ART	 Superficies artificiales 	6. Zonas urbanas impermeables	
			1. Cultivos de secano	
500	AGR	2. Superficies agrícolas	2. Mosaicos de cultivos permanentes	
			3. Pastizales, regadíos y viñedos	
400	PRA	3. Prados permanentes	, с ,	
300	MAT	4. Matorrales	4. Matorrales, bosques y frutales	
200	BOS	5. Bosques	5. Bosques maduros	
600	ESC	6. Canchales, roquedos y vegetación escasa	7. Suelos sin vegetación	
100	OTR	7. Otros	8. Humedales y superficies de agua libre	

El resultado gráfico de esta clasificación de coberturas de suelo para el escenario 1990 y 2018 se puede ver en las siguientes figuras.

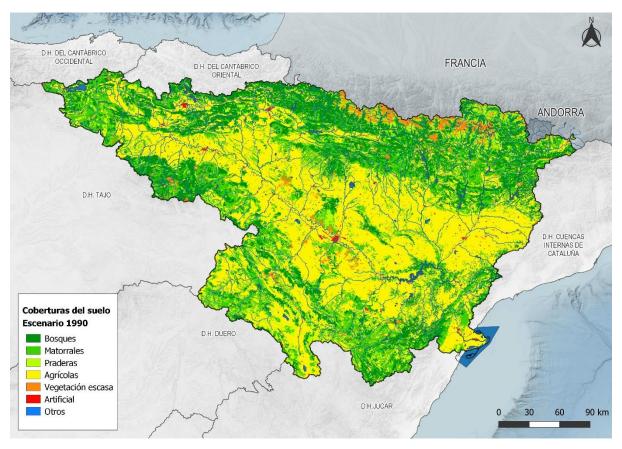


Figura 2. Mapa reclasificado de usos del suelo CLC 1990

SEPARATA Índice - Pág. 9 de 63

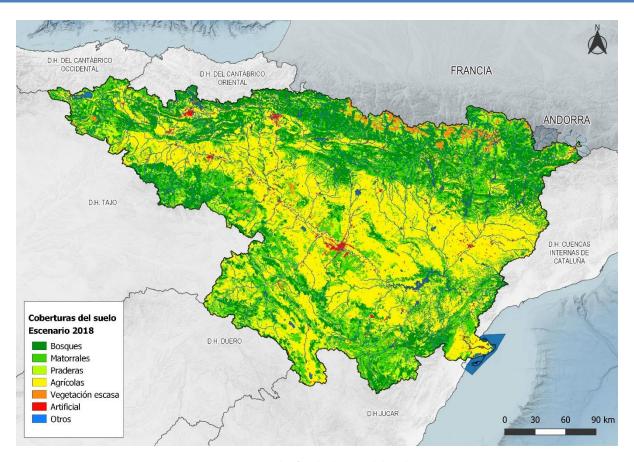


Figura 3. Mapa reclasificado de usos del suelo CLC 2018

Estos dos ráster se usan como datos de entrada para la herramienta *Tabulate Area* de ArcGIS para obtener una tabla de tabulación cruzada. Esta tabla muestra la superficie que ha pasado de cada una de las 8 clases a otras, entre los dos años estudiados: 1990y 2018.

Tabla 7. Tabulación cruzada de usos del suelo en la cuenca del Ebro entre 1990 y 2018 (superficie en hectáreas)

				Cobertur	as del suelo	en 2018				
		OTR	BOS	MAT	PRA	AGR	ESC	ART	Suma	Pérdidas
	OTR	50.254	5.905	5.010	613	5.521	297	314	67.914	17.660
	BOS	3.319	1.595.439	204.040	26.305	58.465	4.823	2.013	1.894.404	298.965
Coberturas	MAT	2.480	478.438	1.054.259	144.674	175.247	22.221	5.321	1.882.640	828.381
del suelo	PRA	519	24.610	98.942	163.271	18.800	17.499	1.078	324.719	161.448
en 1990	AGR	10.981	162.942	308.730	56.733	3.510.867	9.084	61.608	4.120.945	610.078
	ESC	712	13.761	59.933	29.894	9.788	100.260	537	214.885	114.625
	ART	110	795	1.432	298	6.315	144	41.579	50.673	9.094
	Suma	68.375	2.281.890	1.732.346	421.788	3.785.003	154.328	112.450		
	Ganancias	18.121	686.451	678.087	258.517	274.136	54.068	70.871		

A continuación se muestra el balance entre las ganancias y las pérdidas.

SEPARATA Índice - Pág. 10 de 63

Clase	CLC 1990	CLC 2018	Ganancias	Pérdidas	Balance
Otros	67.914	68.375	18.121	17.660	461
Bosque	1.894.404	2.281.890	686.451	298.965	387.486
Matorrales	1.882.640	1.732.346	678.087	828.381	-150.294
Prados permanentes	324.719	421.788	258.517	161.448	97.069

3.785.003

154.328

112.450

8.556.180

274.136

54.068

70.871

2.040.251

610.078

114.625

9.094

2.040.251

-335.942

-60.557

61.777

0

4.120.945

214.885

50.673

8.556.180

Tabla 8. Balance de usos del suelo en la cuenca del Ebro entre 1990 y 2018 (superficie en hectáreas)

De este balance se puede extraer que el uso que más ha aumentado su superficie en la ventana temporal estudiada es la de bosque, mientras que la que más pérdidas ha sufrido es la de terrenos agrícolas.

3.2.2. Pendientes y texturas del suelo

Para estos parámetros se ha utilizado directamente los ráster reclasificados de SIMPA 2019. Además, se les ha dado un valor de píxel con el objetivo de cruzarlas en el siguiente paso. Las siguientes tablas los muestran con detalle.

Tabla 9. Clasificación de pendientes

Superficies agrícolas

Canchales, roquedos y

vegetación escasa
Superficies artificiales

Total

	Pendientes								
nº clase (valor del píxel)	Clase (Pendiente en º)								
1	< 0,5								
2	0,5 a 1								
3	1 a 2								
4	2 a 4								
5	4 a7								
6	7 a 10								
7	10 a 14								
8	> 14								

Tabla 10. Clasificación de texturas del suelo

Gı	Grupos texturales									
nº clase (valor del píxel)	Clase (Thorn-Matter 1957)									
10	Franco- Limosa									
20	Franco- Arcillosa									
30	Franco- Arenosa fina									
40	Arcillosa									
50	Arenosa Fina									

3.2.3. Reclasificación del parámetro H_{max}

Con los dos ráster creados previamente de usos del suelo de CLC 1990 y 2018, junto con los mapas de pendientes y texturas, se crea, mediante la herramienta *Raster Calculator* de ArcGIS con una suma simple de los valores de los píxeles, sendos ráster con un código de tres cifras en cada píxel que define el uso, la pendiente y la textura de la superficie que cubre.

SEPARATA Índice - Pág. 11 de 63

Por ejemplo, un píxel con valor 742 representará una superficie artificial, textura arcillosa y una pendiente de 0,5º a 1º, mientras que un píxel con valor 216 representará una superficie de bosque, textura franco-limosa y una pendiente de 7º a 10º.

Partiendo de la reclasificación de CLC de la Tabla 6, se ha adaptado la tabla de H_{max} de SIMPA 2019, que tenía 8 clases de usos del suelo, en una con 7 clases de coberturas de suelo. Se han mantenido los valores de H_{max} en las clases que se han relacionado 1-1. En el caso de la clase AGR, se ha calculado como el promedio de las clases 1, 2 y 3 del estudio previo. El resultado se puede ver en la siguiente tabla.

Tabla 11. Tabla de evaluación de H_{max} según los usos de suelo, la pendiente y la textura, utilizada en el presente estudio

Textura	Pendiente	ART	ESC	AGR	PRA	MAT	BOS	OTR
	1	100	140	155	170	210	250	1000
	2	100	120	148	160	200	220	1000
	3	100	100	142	150	190	210	1000
Annual Etas	4	100	80	135	140	180	200	1000
Arenosa Fina	5	50	60	95	100	150	160	1000
	6	50	40	58	70	130	140	1000
	7	25	20	32	50	60	70	1000
	8	5	5	5	5	7	10	1000
	1	110	220	223	230	240	260	1000
	2	110	210	207	220	220	230	1000
	3	110	200	187	220	220	230	1000
	4	110	180	173	200	200	200	1000
Franco- Arenosa fina	5	50	140	137	190	190	200	1000
	6	50	120	70	100	110	130	1000
	7	25	75	35	60	75	75	1000
	8	5	5	5	5	10	10	1000
	1	120	240	263	300	310	400	1000
	2	120	225	240	260	270	350	1000
	3	120	210	223	240	240	310	1000
Francis Marian	4	120	190	203	210	210	240	1000
Franco- Limosa	5	50	150	173	180	190	230	1000
	6	50	130	97	130	130	130	1000
	7	25	80	52	75	80	80	1000
	8	5	5	5	5	10	30	1000
	1	110	220	247	260	265	320	1000
	2	110	210	225	245	255	300	1000
	3	110	200	202	240	245	250	1000
France Augillage	4	110	180	185	230	235	240	1000
Franco- Arcillosa	5	50	140	147	180	190	230	1000
	6	50	120	77	90	125	140	1000
	7	25	75	32	35	60	70	1000
	8	5	5	5	5	10	20	1000
	1	100	180	210	250	260	270	1000
	2	100	170	197	230	240	250	1000
	3	100	160	180	210	220	230	1000
Arcillosa	4	100	150	153	190	200	220	1000
Arcillosa	5	50	75	120	140	180	190	1000
	6	50	50	83	110	140	150	1000
	7	25	25	35	50	60	70	1000
	8	5	5	5	5	7	10	1000

SEPARATA Índice - Pág. 12 de 63

El siguiente paso es relacionar estos valores de H_{max} en mm con el código de tres cifras que se creó en el punto anterior.

Por ejemplo, una superficie artificial, textura arcillosa y una pendiente de 0.5° a 1° , tendrá un valor de píxel (código) de 742 y un H_{max} de 100 mm, mientras que un píxel con valor 216 representará una superficie de bosque, textura franco-limosa y una pendiente de 7° a 10° y un H_{max} de 130 mm.

3.2.4. Reclasificación del código de H_{max}

El proceso de creación de un código de tres cifras al que se pueda asociar un H_{max} produce un total de 280 códigos diferentes. Sin embargo, a muchos de esos códigos se les asocia un mismo valor de H_{max} . Por ejemplo, un código 245 (bosque, arcillosa, 4° a 7°) y un código 614 (vegetación escasa, franco-limosa, 2° a 4°) tienen un H_{max} de 190 mm.

Por ese motivo, el siguiente paso es reclasificar el código de H_{max} , agrupándolos y reduciendo el número de clases. En la siguiente tabla se representan las 16 clases en las que se han agrupado los diferentes valores de H_{max} .

Tabla	12.	Reclasificación	de	I codigo	de H _{max}
-------	-----	-----------------	----	----------	---------------------

Clases de Hmax	Hmax (mm)
1	0 - 5
2	6 - 25
3	26 - 50
4	51 - 75
5	76 - 100
6	101 - 125
7	126 - 150
8	151 - 175
9	176 - 200
10	201 - 225
11	226 - 250
12	251 - 299
13	300 - 325
14	326 - 350
15	351 - 400
16	> 400

^{*}Las clases coloreadas en gris no están representadas en el ámbito de la cuenca del Ebro.

3.3. Tabulación cruzada de H_{max} entre 1990 y 2018

Si se realiza todo el proceso descrito hasta el momento con el CLC de 1990 y con el CLC de 2018, el mapa de texturas y el de pendientes, se obtienen dos mapas ráster de código de H_{max} reclasificados representativos de los escenarios 1990 y 2018.

Aplicando el *Tabulate Area* para calcular el intercambio de superficies entre las 16 clases de H_{max} entre 1990 y 2018 se obtiene la tabla que se muestra a continuación.

SEPARATA Índice - Pág. 13 de 63

Tabla 13. Tabulación cruzada de clases de H_{max} en la DHE entre 1990 y 2018 (superficie en hectáreas)

								Clases de H	l _{max} en 2018	;							
		1	2	3	4	5	6	7	8	9	10	11	12	13	16	Suma	Pérdidas
	1	115.025	49.274	-	-	-	-	-	-	-	-	-	-	-	70	164.369	49.344
	2	20.203	391.884	4.081	4.293	-	-	-	-	-	-	-	-	-	82	420.543	28.659
	3	-	2.501	58.024	31.910	244	3.339	6.525	9	379	-	42	-	-	85	103.058	45.034
	4	-	1.504	21.580	403.993	123	1.284	7.688	104	11.447	-	-	-	-	190	447.913	43.920
	5	-	-	1.539	211	106.745	12.473	30.584	3.782	3.670	1.337	332	55	-	390	161.118	54.373
	6	-	-	3.526	1.434	11.910	204.868	40.250	6	56.197	856	435	9	8	513	320.012	115.144
Clases de H _{max}	7	-	-	3.564	4.250	17.927	25.322	685.551	11.274	68.838	3.130	9.947	-	-	1.119	830.922	145.371
en 1990	8	-	-	21	93	9.745	155	4.829	625.896	99.003	44.781	2.310	-	-	1.563	788.396	162.500
	9	-	-	1.017	3.635	28.809	27.021	54.497	53.863	2.605.164	142.093	136.685	754	-	6.450	3.059.988	454.824
	10	-	-	-	-	8.367	9.303	1.289	18.469	73.849	1.106.943	58.629	12.533	2.192	4.247	1.295.821	188.878
	11	-	-	107	-	720	2.567	3.216	1.320	62.882	32.779	710.233	6.281	1.431	2.355	823.891	113.658
	12	-	-	-	-	211	158	-	-	653	7.450	6.772	33.623	5.668	803	55.338	21.715
	13	-	-	-	-	-	96	-	-	-	1.093	871	1.736	12.736	225	16.757	4.021
	16	185	218	176	478	386	554	882	711	4.041	3.284	4.019	2.150	547	49.775	67.406	17.631
	Suma	135.413	445.381	93.635	450.297	185.187	287.140	835.311	715.434	2.986.123	1.343.746	930.275	57.141	22.582	67.867		
	Ganancias	20.388	53.497	35.611	46.304	78.442	82.272	149.760	89.538	380.959	236.803	220.042	23.518	9.846	18.092		

Del mismo modo a como se ha realizado con los usos del suelo, se muestran a continuación las ganancias frente a las pérdidas.

Tabla 14. Balance de cambios de H_{max} en la DHE entre 1990 y 2018

Clase	H _{max} (mm)	H _{max} 1990 (ha)	H _{max} 2018 (ha)	Ganancias (ha)	Pérdidas (ha)	Balance (ha)	
1	0 - 5	164.369	135.413	20.388	49.344	-28.956	
2	6 - 25	420.543	445.381	53.497	28.659	24.838	
3	26 - 50	103.058	93.635	35.611	45.034	-9.423	
4	51 - 75	447.913	450.297	46.304	43.920	2.384	
5	76 - 100	161.118	185.187	78.442	54.373	24.069	
6	101 - 125	125 320.012 287.140		82.272	115.144	-32.872	
7	126 - 150	830.922	835.311	149.760	145.371	4.389	
8	151 - 175	788.396	715.434	89.538	162.500	-72.962	
9	176 - 200	3.059.988	2.986.123	380.959	454.824	-73.865	
10	201 - 225	1.295.821	1.343.746	236.803	188.878	47.925	
11	226 - 250	823.891	930.275	220.042	113.658	106.384	
12	251 - 299	55.338	57.141	23.518	21.715	1.803	
13	300 - 325	16.757	22.582	9.846	4.021	5.825	
16	> 400	67.406	67.867	18.092	17.631	461	

El resultado gráfico del cálculo del H_{max} en 1990, 2018 y el cambio entre ambas fechas se puede ver en las siguientes figuras.

SEPARATA Índice - Pág. 15 de 63

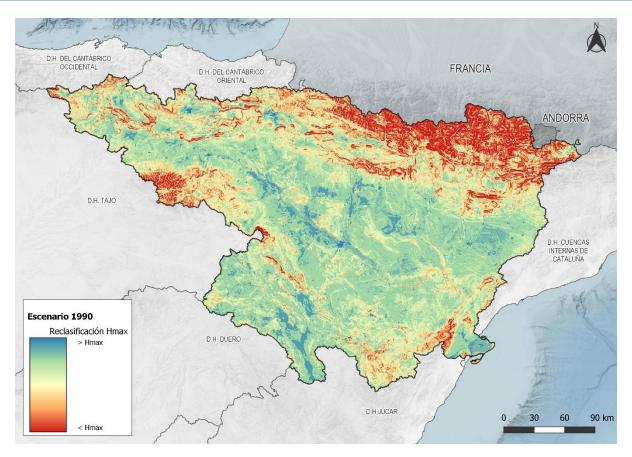


Figura 4. Mapa de H_{max} en la DHE en 1990

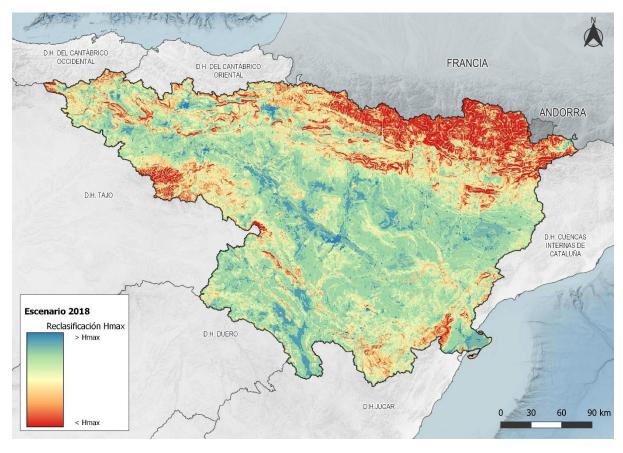


Figura 5. Mapa de H_{max} en la DHE en 2018

SEPARATA Índice - Pág. 16 de 63

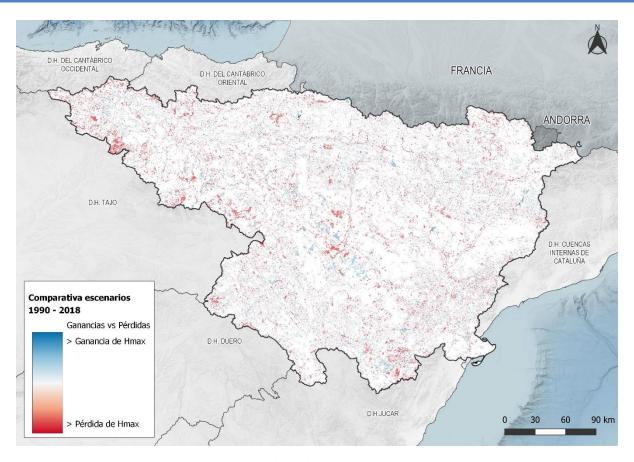


Figura 6. Mapa de cambio de H_{max} entre 1990 y 2018

SEPARATA Índice - Pág. 17 de 63

4. ESTIMACIÓN DE LA MODIFICACIÓN DE LA APORTACIÓN GLOBAL EN LA CUENCA DEL EBRO DEBIDA AL CAMBIO DE USOS DEL SUELO

Como se ha comentado previamente, según el modelo de evaluación de excedentes de SIMPA, valores más altos del parámetro H_{max} producen menores aportaciones. En la siguiente figura se muestra un ejemplo del efecto de la variación de H_{max} en el excedente total, manteniendo el valor del resto de parámetros del modelo, aplicado a 4 series de parejas de datos mensuales de precipitación y evapotranspiración potencial de 45 años de longitud.

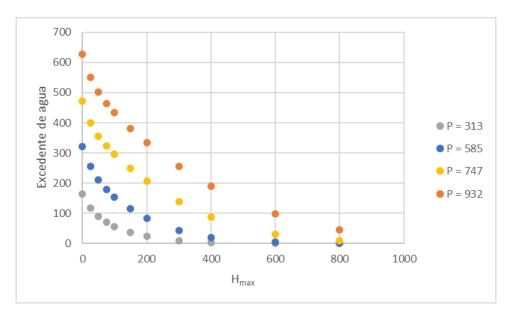


Figura 7. Ejemplos de variación del excedente total de agua con la modificación de H_{max} (valores en mm)

En las estimaciones que se presentan a continuación se utiliza la siguiente tabla de variación del excedente en función de la modificación de H_{max} , considerando que puede representar un comportamiento medio aunque muy simplificado del modelo. En todo caso debe tenerse en cuenta que las estimaciones se realizan en términos relativos entre los dos escenarios temporales. Los valores de H_{max} corresponden a los más frecuentes de cada una de las 16 clases consideradas en la reclasificación utilizada en La 0 del apartado 3.3 "Tabulación cruzada de clases de H_{max} en la DHE entre 1990 y 2018".

Tabla 15. Excedente según valores de H_{max} representativos de las clases consideradas

Clase	H _{max} (mm)	Excedente (mm)
1	5	454,4
2	17	418,1
3	44	364,8
4	67	333,2
5	93	303,7
6	115	281,3
7	140	257,8
8	164	236,7

SEPARATA Índice - Pág. 18 de 63

Clase	H _{max} (mm)	Excedente (mm)
9	190	215,1
10	215	195,6
11	239	178,0
12	263	161,5
13	308	133,4
16	1000	2,1

Aplicando la tabla precedente a la 0 del apartado 3.3 que muestra la evolución de superficies de los 16 rangos de valores de H_{max} entre la situación correspondiente a los usos del suelo del año 1990 y la de 2018, e introduciendo un ajuste teniendo en cuenta la aportación natural estimada para el conjunto de la cuenca del Ebro para el periodo 1980/81 a 2017/18 (15.500 hm³/año), se obtiene la siguiente tabla en la que se estiman las perdidas o ganancias de aportación debidas a cada cambio de uso.

En el conjunto de la cuenca se obtiene un valor de -76 hm³/año atribuibles exclusivamente al efecto de los cambios en los usos del suelo entre 1990 y 2018, lo que supone aproximadamente una reducción de la aportación de 0,49% sobre los 15.500 hm³/año totales en régimen natural.

SEPARATA Índice - Pág. 19 de 63

Tabla 16. Estimación de la variación de la aportación entre 1990 y 2018 atribuible a cambios de usos del suelo en la cuenca del Ebro (hm³/año)

								Clases de H	_{max} en 2018	3						Variación
		1	2	3	4	5	6	7	8	9	10	11	12	13	16	excedente (hm³/año)
	1	0	-13,6												-0,2	-14
	2	6	0	-1,6	-2,8										-0,3	1
	3		1,0	0	-7,6	-0,1	-2,1	-5,3	0,0	-0,4		-0,1			-0,2	-15
	4		1,0	5,2	0	0,0	-0,5	-4,4	-0,1	-10,2					-0,5	-10
	5			0,7	0,0	0	-2,1	-10,6	-1,9	-2,5	-1,1	-0,3	-0,1		-0,9	-19
	6			2,2	0,6	2,0	0	-7,2	0,0	-28,2	-0,6	-0,3	0,0	0,0	-1,1	-33
Clases de H _{max}	7			2,9	2,4	6,2	4,5	0	-1,8	-22,2	-1,5	-6,0			-2,2	-18
en 1990	8			0,0	0,1	4,9	0,1	0,8	0	-16,1	-13,9	-1,0			-2,8	-28
	9			1,2	3,2	19,3	13,5	17,6	8,8	0	-21,0	-38,4	-0,3		-10,4	-6
	10					6,8	6,0	0,6	5,7	10,9	0	-7,8	-3,2	-1,0	-6,2	12
	11			0,2		0,7	2,0	1,9	0,6	17,7	4,4	0	-0,8	-0,5	-3,1	23
	12					0,2	0,1			0,3	1,9	0,8	0	-1,2	-1,0	1
	13						0				0,5	0,3	0,4	0	-0,2	1
	16	0,6	0,7	0,5	1,2	0,9	1,2	1,7	1,3	6,5	4,8	5,4	2,6	0,5	0	28
																-76

SEPARATA Índice - Pág. 20 de 63

5. ESTUDIO EN SUBCUENCAS SELECCIONADAS

En este apartado se realiza el estudio en determinadas subcuencas en lugar de utilizar todo el ámbito de la cuenca del Ebro.

Para ello se ha seleccionado 8 subcuencas con control hidrométrico que se consideran muy poco afectadas hidrológicamente por extracción o regulación y que se muestran en la figura siguiente.

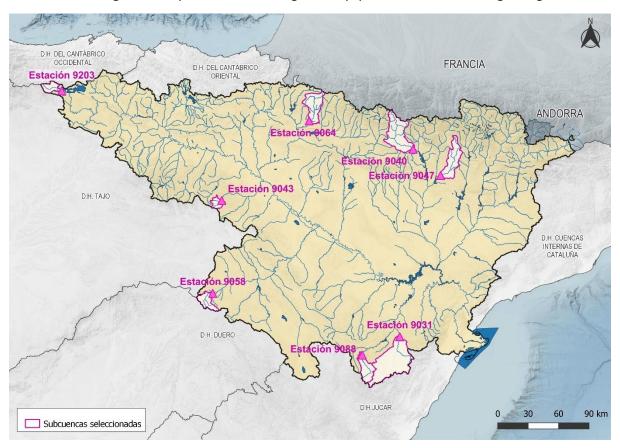


Figura 8. Subcuencas seleccionadas

Tabla 17. Estaciones de aforo de las subcuencas seleccionadas

	Registro foronómico	Aportaciones 1980/81-2017/18 (hm³/año)					
Código	Nombre	Superficie cuenca (km²)	SIMPA ⁽¹⁾	SIMPA ⁽²⁾	Aforo ^(*)		
9031	Río Bergantes en Zorita	1.055,06	104,74	90,95	35,61		
9040	Río Ara en Boltaña	625,03	431,94	432,96	500,99		
9043	Río Linares en San Pedro Manrique	104,93	18,20	18,21	13,98		
9047	Río Isábena en Capella	426,17	149,13	148,12	125,79		
9058	Río Jalón en Jubera	205,81	10,31	10,32	15,92		
9064	Río Salazar en Aspurz	398,42	287,50	284,10	253,73		
9088	Río Fortanete en Pitarque	281,33	27,18	25,89	50,68		
9203	Río Hijar en Reinosa	145,33	89,94	89,53	90,03		

^(*) Con la finalidad de evitar la falta de homogeneidad potencialmente debida a la consideración de periodos diferentes, los valores registrados se marcan en naranja si se dispone de menos del 75% de los datos del periodo.

SEPARATA Índice - Pág. 21 de 63

⁽¹⁾ Aportación anual media evaluada mediante SIMPA en el periodo indicado

⁽²⁾ Aportación anual media evaluada mediante SIMPA, en el periodo indicado, considerando únicamente los meses en los que se dispone de registro foronómico

5.1. Análisis hidrológico

En las subcuencas seleccionadas la regulación y extracción de agua es despreciable.

Como un intento de evaluar la modificación en la aportación no debida a efectos climáticos se compara la serie de valores de aportación mensual registrados en la estación de aforos con las aportaciones evaluadas mediante SIMPA 2019.

Para cada subcuenca se presentan dos figuras. La primera muestra ambas series mensuales de aportación en el periodo 1980/81 a 2017/18: registrada y simulada. La segunda representa año a año la diferencia entre las aportaciones medias mensuales aforadas menos las simuladas, restando la media de estas diferencias de todo el periodo. De este modo la media de la serie que se representa es 0 y permite apreciar mejor las tendencias al aumento o disminución de las aportaciones registradas con respecto a las simuladas.

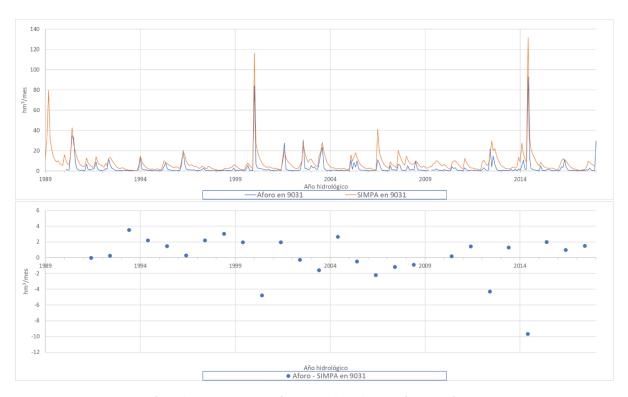


Figura 9. Comparación de la serie de aportación registrada en la estación 9031 Río Bergantes en Zorita con la simulada mediante SIMPA

SEPARATA Índice - Pág. 22 de 63

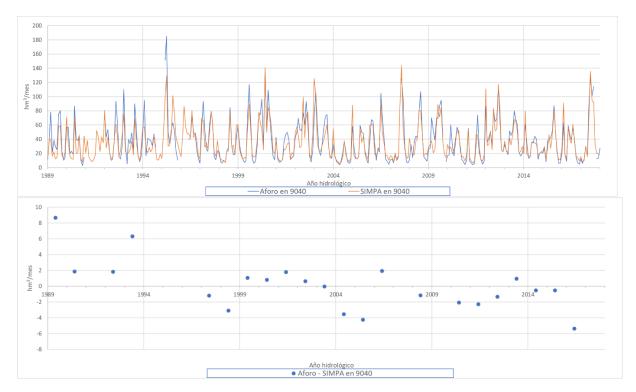


Figura 10. Comparación de la serie de aportación registrada en la estación 9040 Río Ara en Boltaña con la simulada mediante SIMPA

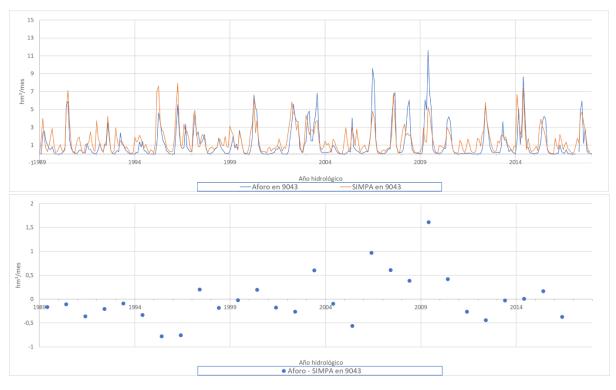


Figura 11. Comparación de la serie de aportación registrada en la estación 9043 Río Linares en San Pedro Manrique con la simulada mediante SIMPA

SEPARATA Índice - Pág. 23 de 63

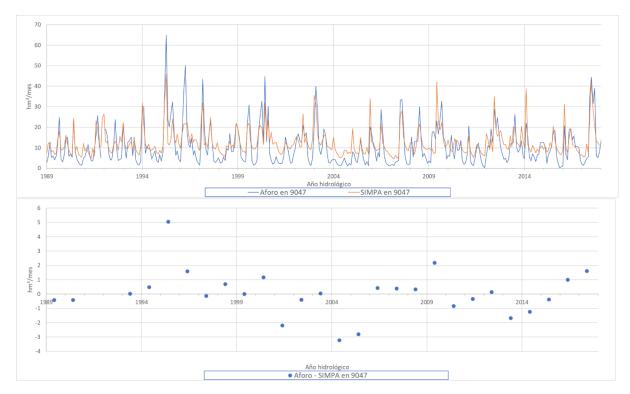


Figura 12. Comparación de la serie de aportación registrada en la estación 9047 Río Isábena en Capella con la simulada mediante SIMPA

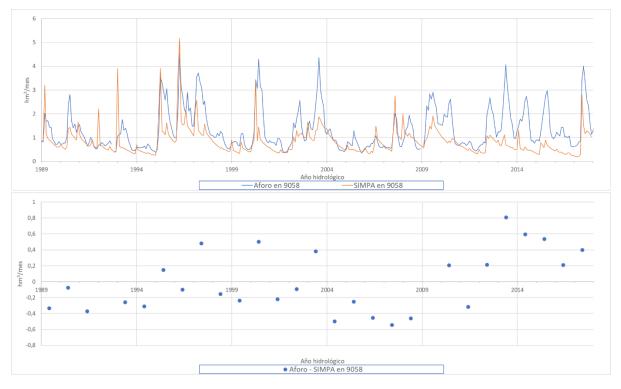


Figura 13. Comparación de la serie de aportación registrada en la estación 9058 Río Jalón en Jubera con la simulada mediante SIMPA

SEPARATA Índice - Pág. 24 de 63

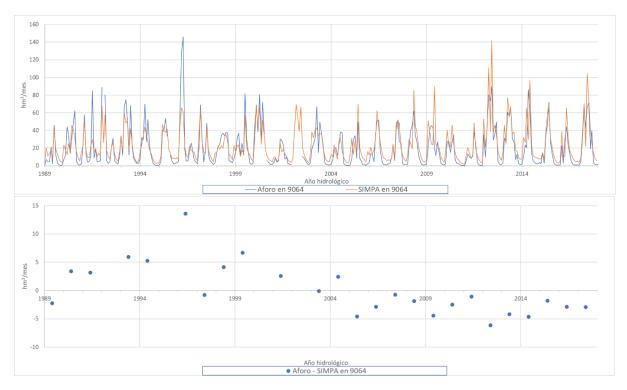


Figura 14. Comparación de la serie de aportación registrada en la estación 9064 Río Salazar en Aspurz con la simulada mediante SIMPA

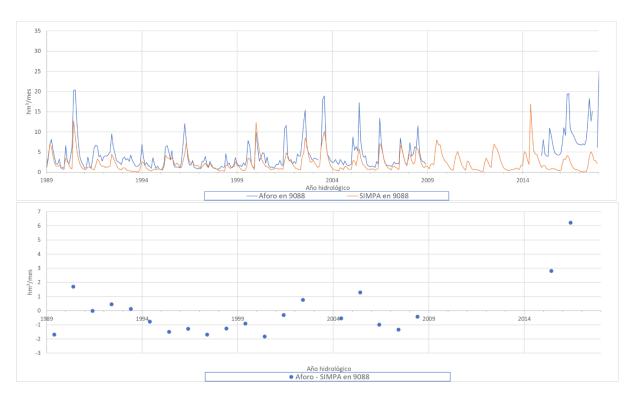


Figura 15. Comparación de la serie de aportación registrada en la estación 9088 Río Fortanete en Pitarque con la simulada mediante SIMPA

SEPARATA Índice - Pág. 25 de 63

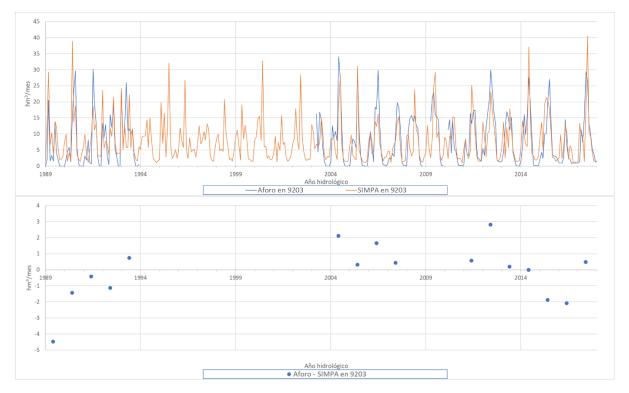


Figura 16. Comparación de la serie de aportación registrada en la estación 9203 Río Hijar en Reinosa con la simulada mediante SIMPA

5.2. Cambios en los usos del suelo

5.2.1. Subcuenca del río Bergantes hasta la estación 9031

Los resultados del análisis de cambio de usos del suelo en esta subcuenca se pueden ver con detalle en la siguiente tabla expresada en hectáreas.

Tabla 18. Tabulación cruzada de usos de suelo en la subcuenca del río Bergantes hasta la estación 9031 (superficie en hectáreas)

		OTR	BOS	MAT	PRA	AGR	ESC	ART	Suma	Pérdidas
Coberturas del suelo en 1990	OTR	-	-	-	-	-	-	-	-	-
	BOS	2	30.300	3.228	3.299	474	22	-	37.325	7.025
	MAT	30	8.957	9.562	15.638	2.524	48	23	36.782	27.220
	PRA	1	707	4.518	3.995	744	52	33	10.050	6.055
	AGR	159	1.964	3.337	6.704	8.983	20	145	21.312	12.329
	ESC	-	-	-	-	-	-	-	-	-
	ART	-	-	-	-	-	-	-	-	-
	Suma	192	41.928	20.645	29.636	12.725	142	201		
	Ganancias	192	11.628	11.083	25.641	3.742	142	201		

A continuación se muestra el balance entre las ganancias y las pérdidas.

SEPARATA Índice - Pág. 26 de 63

Tabla 19. Balance de usos del suelo entre 1990 y 2018 en la subcuenca del río Bergantes hasta la estación 9031 (hectáreas)

Clase	CLC 1990	CLC 2018	Ganancias	Pérdidas	Balance
Otros	-	192	192	-	-
Bosque	37.325	41.928	11.628	7.025	4.603
Matorrales	36.782	20.645	11.083	27.220	-16.137
Prados permanentes	10.050	29.636	25.641	6.055	19.586
Superficies agrícolas	21.312	12.725	3.742	12.329	-8.587
Canchales, roquedos y vegetación escasa	-	142	142	-	-
Superficies artificiales	-	201	201	-	-
Total	105.469	105.469	52.629	52.629	-

Las figuras siguientes muestran los usos en los escenarios de 1990 y 2018.

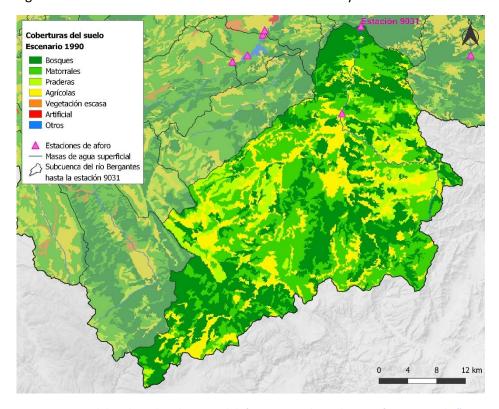


Figura 17. Usos del suelo en la subcuenca del río Bergantes hasta la estación 9031 en el año 1990

SEPARATA Índice - Pág. 27 de 63

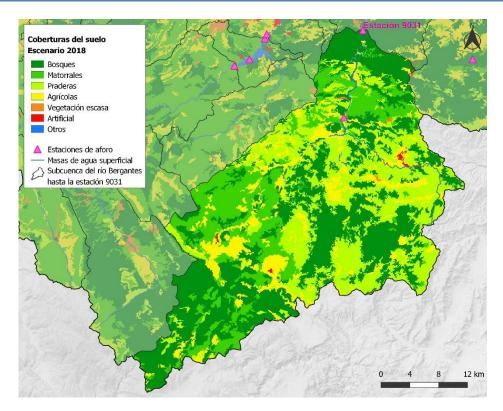


Figura 18. Usos del suelo en la subcuenca del río Bergantes hasta la estación 9031 en el año 2018

A continuación, se muestra el intercambio de H_{max} entre los años 1990 y 2018 en la siguiente tabulación cruzada.

SEPARATA Índice - Pág. 28 de 63

Tabla 20. Tabulación cruzada de clases de H_{max} en la subcuenca del río Bergantes hasta la estación 9031 (superficie en hectáreas)

								Clases de H	_{max} en 2018								
		1	2	3	4	5	6	7	8	9	10	11	12	13	16	Suma	Pérdidas
	1	62	181	-	-	-	-	-	-	-	-	-	-	-	-	243	181
	2	28	354	-	-	-	-	-	-	-	-	-	-	-	-	382	28
	3	-	3	1.014	882	-	-	-	-	-	-	-	-	-	-	1.899	885
	4	-	-	711	4.142	-	-	1.163	-	-	-	-	-	-	-	6.016	1.874
	5	-	-	8	-	2.411	294	2.238	154	-	-	-	-	-	6	5.111	2.700
	6	-	-	4	-	903	1.252	1.748	-	479	-	-	-	-	6	4.392	3.140
Clases de H _{max}	7	-	-	24	468	1.340	759	11.445	437	3.206	53	352	-	-	56	18.140	6.695
en 1990	8	-	-	-	-	109	-	127	3.129	1.440	245	21	-	-	28	5.099	1.970
	9	-	-	23	23	9	362	5.997	403	22.973	2.415	2.974	-	-	49	35.228	12.255
	10	-	-	-	-	4	17	21	134	1.656	8.397	1.063	26	17	35	11.370	2.973
	11	-	-	-	-	-	25	40	6	944	401	15.171	43	26	10	16.666	1.495
	12	-	-	-	-	1	-	-	-	-	20	141	241	65	2	470	229
	13	-	-	-	-	-	-	-	-	-	-	34	17	318	-	369	51
	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Suma	90	538	1.784	5.515	4.777	2.709	22.779	4.263	30.698	11.531	19.756	327	426	192		
	Ganancias	28	184	770	1.373	2.366	1.457	11.334	1.134	7.725	3.134	4.585	86	108	192		

El balance de H_{max} en esta subcuenca se detalla, clase a clase, en la siguiente tabla.

Tabla 21. Balance de cambios de H_{max} en la subcuenca del río Bergantes hasta la estación 9031

Clase	Hmax (mm)	Ganancias (ha)	Pérdidas (ha)	Balance (ha)
1	0 - 5	28	181	- 153
2	6 - 25	184	28	156
3	26 - 50	770	885	- 115
4	51 - 75	1.373	1.874	- 501
5	76 - 100	2.366	2.700	- 334
6	101 - 125	1.457	3.140	- 1.683
7	126 - 150	11.334	6.695	4.639
8	151 - 175	1.134	1.970	- 836
9	176 - 200	7.725	12.255	- 4.530
10	201 - 225	3.134	2.973	161
11	226 - 250	4.585	1.495	3.090
12	251 - 299	86	229	- 143
13	300 - 325	108	51	57
16	> 400	192	-	192

La siguiente figura representa la distribución de esas pérdidas y ganancias de H_{max} en esta subcuenca.

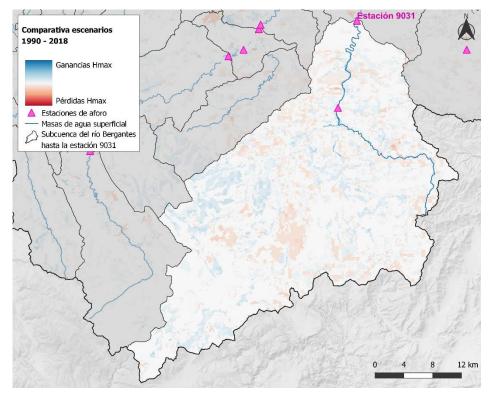


Figura 19. Ganancias vs pérdidas en la subcuenca del río Bergantes hasta la estación 9031 entre los años 1990 y 2018

A la vista de los cambios en las coberturas del suelo y en el H_{max} en esta cuenca entre los años 1990 y 2018 se puede decir que:

SEPARATA Índice - Pág. 30 de 63

Las mayores pérdidas de H_{max} se han dado en la parte baja de la subcuenca, en el entorno de los municipios de Zorita del Maestrazgo, Palanques, Forcall, Todolella y Olocau del Rey, donde la superficie boscosa se ha reducido en favor del matorral y la de matorral se ha transformado en praderas.

La misma tendencia de pérdida de H_{max} se puede ver en los alrededores de la localidad de Morella, donde terrenos agrícolas se han sustituido por superficie artificial.

Otra zona que presenta grandes superficies de disminución de H_{max} es la parte sur del municipio de Portell de Morella, donde el matorral ha sido sustituido por prados permanentes.

Por el contrario, la zona con mayores ganancias de H_{max} está entre los municipios de Tronchón, Mirambel, Cantavieja y Mosqueruela, en la cabecera de la cuenca, donde grandes superficies agrícolas y prados han sido sustituidas por matorrales. Además, la superficie boscosa también ha aumentado en esta zona.

5.2.2. Subcuenca del río Ara hasta la estación 9040

Los resultados del análisis de cambio de usos del suelo en esta subcuenca se pueden ver con detalle en la siguiente tabla expresada en hectáreas.

Tabla 22. Tabulación cruzada de usos de suelo en la subcuenca del río Ara hasta la estación 9040 (superficie en hectáreas)

				Cobertu	ras del suelo	en 2018				
		OTR	BOS	MAT	PRA	AGR	ESC	ART	Suma	Pérdidas
	OTR	140	326	249	1	78	7	13	814	674
	BOS	9	28.174	950	271	113	81	7	29.605	1.431
Coberturas	MAT	2	5.312	4.537	478	56	86	11	10.482	5.945
del suelo	PRA	-	687	2.106	5.929	200	585	-	9.507	3.578
en 1990	AGR	-	649	290	59	1.594	-	106	2.698	1.104
	ESC	13	293	92	1.521	-	7.469	-	9.388	1.919
	ART	-	-	-	-	6	-	23	29	6
	Suma	164	35.441	8.224	8.259	2.047	8.228	160		
	Ganancias	24	7.267	3.687	2.330	453	759	137		

A continuación se muestra el balance entre las ganancias y las pérdidas.

Tabla 23. Balance de usos del suelo entre 1990 y 2018 en la subcuenca del río Ara hasta la estación 9040 (hectáreas)

Clase	CLC 1990	CLC 2018	Ganancias	Pérdidas	Balance
Otros	814	164	24	674	-650
Bosque	29.605	35.441	7.267	1.431	5.836
Matorrales	10.482	8.224	3.687	5.945	-2.258
Prados permanentes	9.507	8.259	2.330	3.578	-1.248
Superficies agrícolas	2.698	2.047	453	1.104	-651
Canchales, roquedos y vegetación escasa	9.388	8.228	759	1.919	-1.160
Superficies artificiales	29	160	137	6	131
Total	62.523	62.523	14.657	14.657	0

SEPARATA Índice - Pág. 31 de 63

Las figuras siguientes muestran los usos en los escenarios de 1990 y 2018.

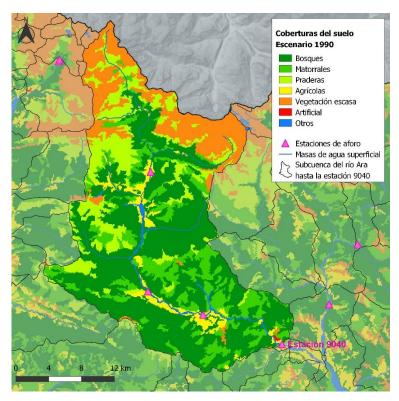


Figura 20. Usos del suelo en la subcuenca del río Ara hasta la estación 9040 en el año 1990

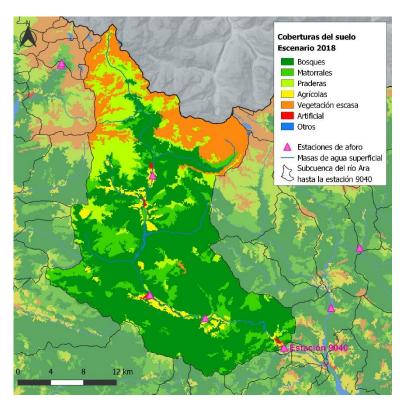


Figura 21. Usos del suelo en la subcuenca del río Ara hasta la estación 9040 en el año 2018

A continuación, se muestra el intercambio de H_{max} entre los años 1990 y 2018 en la siguiente tabulación cruzada.

SEPARATA Índice - Pág. 32 de 63

Tabla 24. Tabulación cruzada de clases de H_{max} en la subcuenca del río Ara hasta la estación 9040 (superficie en hectáreas)

								Clases de Hr	nav en 2019	2						l	
		1	2	3	4	5	6	7	8	9	10	11	12	13	16	Suma	Pérdida
	1	9.332	1.295	-	-	_	-	•	-	_	_		_	_	12	10.639	1.307
	2	627	17.829	276	38		-	_		_	-	-	-		3	18.773	944
						-	-	-	-	-	-	-	-	-			
	3	-	97	2.125	932	1	117	18	-	-	-	-	-	-	3	3.293	1.168
	4	-	12	155	10.076	-	-	131	-	10	-	-	-	-	4	10.388	312
	5	-	-	52	-	336	20	176	-	-	-	-	-	-	-	584	248
	6	-	-	65	-	51	1.414	789	-	163	4	-	-	-	-	2.486	1.072
Clases de	7	-	-	18	35	45	168	6.593	-	549	2	104	-	-	2	7.516	923
H _{max} en 1990	8	-	-	-	-	14	-	-	328	66	56	3	-	-	-	467	139
	9	-	-	7	3	-	28	75	18	3.831	172	397	-	-	3	4.534	703
	10	-	-	-	-	1	7	-	30	22	920	21	-	12	-	1.013	93
	11	-	-	-	-	-	3	5	-	62	2	1.850	6	-	-	1.928	78
	12	-	-	-	-	-	-	-	-	2	-	-	14	9	-	25	11
	13	-	-	-	-	-	-	-	-	-	-	-	-	21	-	21	-
	16	1	37	14	72	21	12	147	14	248	57	53	-	-	140	816	676
	Suma	9.960	19.270	2.712	11.156	469	1.769	7.934	390	4.953	1.213	2.428	20	42	167		
	Ganancias	628	1.441	587	1.080	133	355	1.341	62	1.122	293	578	6	21	27		

El balance de H_{max} en esta subcuenca se detalla, clase a clase, en la siguiente tabla.

Tabla 25. Balance de cambios de H_{max} en la subcuenca del río Ara hasta la estación 9040

Clase	Hmax (mm)	Ganancias (ha)	Pérdidas (ha)	Balance (ha)
1	0 - 5	628	1.307	- 679
2	6 - 25	1.441	944	497
3	26 - 50	587	1.168	- 581
4	51 - 75	1.080	312	768
5	76 - 100	133	248	- 115
6	101 - 125	355	1.072	- 717
7	126 - 150	1.341	923	418
8	151 - 175	62	139	- 77
9	176 - 200	1.122	703	419
10	201 - 225	293	93	200
11	226 - 250	578	78	500
12	251 - 299	6	11	- 5
13	300 - 325	21	-	21
16	> 400	27	676	- 649

La siguiente figura representa la distribución de esas pérdidas y ganancias de H_{max} en esta subcuenca.

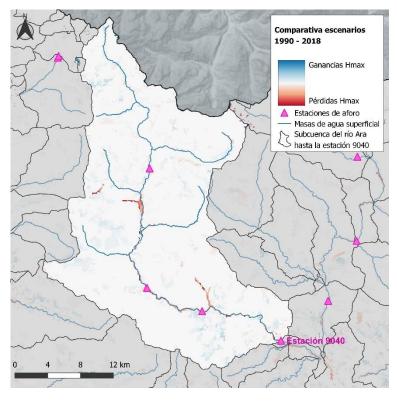


Figura 22. Ganancias vs pérdidas en la subcuenca del río Ara hasta la estación 9040 entre los años 1990 y 2018

Las zonas con pérdidas de H_{max} que aparecen a lo largo del río Ara y su afluente Barranco de Sanchuste responden a una diferencia de criterio a la hora de elaborar los mapas de CORINE Land Cover en 1990 y en 2018, ya que en 1990 se representó como masa de agua mientras que en 2018 no.

SEPARATA Índice - Pág. 34 de 63

Salvando esas particularidades, se aprecian en la subcuenca tres artificializaciones claras en las localidades de Fiscal, Broto y el camping de Ordesa. Esta última, a vista de ortofoto, parece también una diferencia de criterio en la elaboración de los CLC.

Por regla general, esta cuenca ha experimentado una ganancia de H_{max}, principalmente debido al aumento de las superficies boscosas y matorrales y la disminución de los terrenos agrícolas y praderas.

Esta dinámica puede responder a la evolución natural de los ecosistemas tras el abandono del medio rural en las comarcas de los Pirineos.

5.2.3. Subcuenca del río Linares hasta la estación 9043

Los resultados del análisis de cambio de usos del suelo en esta subcuenca se pueden ver con detalle en la siguiente tabla expresada en hectáreas.

Tabla 26. Tabulación cruzada de usos de suelo en la subcuenca del río Linares hasta la estación 9043 (superficie en hectáreas)

				Cobertu	ras del suelo	en 2018				
		OTR	BOS	MAT	PRA	AGR	ESC	ART	Suma	Pérdidas
	OTR	-	-	-	-	-	-	-	-	-
	BOS	-	437	76	112	67	-	-	692	255
Coberturas	MAT	-	282	779	368	162	-	-	1.591	812
del suelo	PRA	-	109	1.201	1.996	127	-	-	3.433	1.437
en 1990	AGR	-	138	360	1.201	3.057	-	-	4.756	1.699
	ESC	-	3	-	-	-	-	-	3	3
	ART	-	-	-	-	-	-	-	-	-
	Suma	-	969	2.416	3.677	3.413	-	-		
	Ganancias	-	532	1.637	1.681	356	-	-		

A continuación se muestra el balance entre las ganancias y las pérdidas.

Tabla 27. Balance de usos del suelo entre 1990 y 2018 en la subcuenca del río Linares hasta la estación 9043 (hectáreas)

Clase	CLC 1990	CLC 2018	Ganancias	Pérdidas	Balance
Otros	-	-	-	-	-
Bosque	692	969	532	255	277
Matorrales	1.591	2.416	1.637	812	825
Prados permanentes	3.433	3.677	1.681	1.437	244
Superficies agrícolas	4.756	3.413	356	1.699	-1.343
Canchales, roquedos y vegetación escasa	3	-	-	3	-
Superficies artificiales	-	-	-	-	-
Total	10.475	10.475	4.206	4.206	-

Las figuras siguientes muestran los usos en los escenarios de 1990 y 2018.

SEPARATA Índice - Pág. 35 de 63

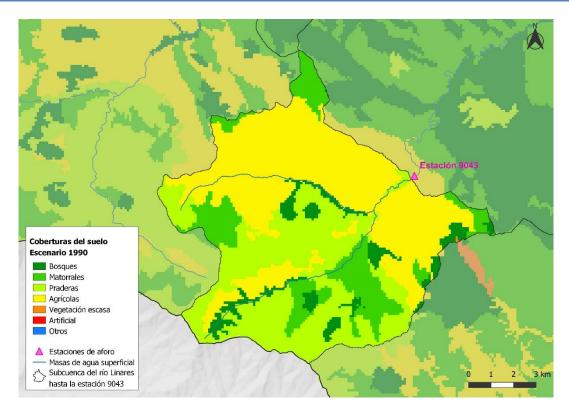


Figura 23. Usos del suelo en la subcuenca del río Linares hasta la estación 9043 en el año 1990

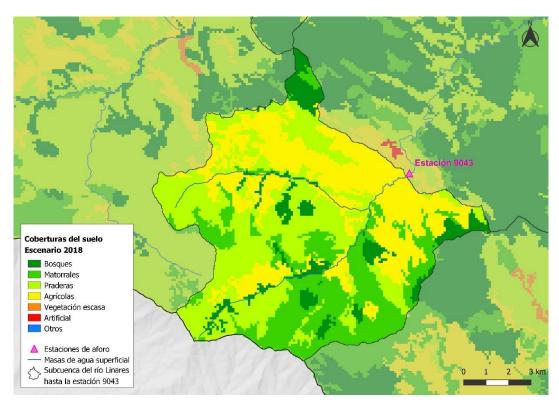


Figura 24. Usos del suelo en la subcuenca del río Linares hasta la estación 9043 en el año 2018

SEPARATA Índice - Pág. 36 de 63

Tabla 28. Tabulación cruzada de clases de H_{max} en la subcuenca del río Linares hasta la estación 9043 (superficie en hectáreas)

								Clases de H	_{max} en 2018								
		1	2	3	4	5	6	7	8	9	10	11	12	13	16	Suma	Pérdidas
	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3	-	-	182	46	-	-	-	-	-	-	-	-	-	-	228	46
	4	-	-	3	199	-	-	25	-	-	-	-	-	-	-	227	28
	5	-	-	-	-	700	89	44	41	-	-	-	-	-	-	874	174
	6	-	-	-	-	5	1.018	355	-	172	-	-	-	-	-	1.550	532
Clases de H _{max}	7	-	-	-	128	68	82	3.618	30	721	5	-	-	-	-	4.652	1.034
en 1990	8	-	-	-	-	-	-	-	423	181	8	-	-	-	-	612	189
	9	-	-	-	-	-	105	143	70	1.417	148	16	-	-	-	1.899	482
	10	-	-	-	-	-	-	-	46	71	243	3	-	-	-	363	120
	11	-	-	-	-	-	-	-	-	12	27	42	11	-	-	92	50
	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Suma	-	-	185	373	773	1.294	4.185	610	2.574	431	61	11	-	-		
	Ganancias	-	-	3	174	73	276	567	187	1.157	188	19	11	-	-		

El balance de H_{max} en esta subcuenca se detalla, clase a clase, en la siguiente tabla.

Tabla 29. Balance de cambios de Hmax en la subcuenca del río Linares hasta la estación 9043

Clase	Hmax (mm)	Ganancias (ha)	Pérdidas (ha)	Balance (ha)
1	0 - 5	-	-	-
2	6 - 25	-	-	-
3	26 - 50	3	46	- 43
4	51 - 75	174	28	146
5	76 - 100	73	174	- 101
6	101 - 125	276	532	- 256
7	126 - 150	567	1.034	- 467
8	151 - 175	187	189	- 2
9	176 - 200	1.157	482	675
10	201 - 225	188	120	68
11	226 - 250	19	50	- 31
12	251 - 299	11	-	11
13	300 - 325	-	-	-
16	> 400	-	-	-

La siguiente figura representa la distribución de esas pérdidas y ganancias de Hmax en esta subcuenca.

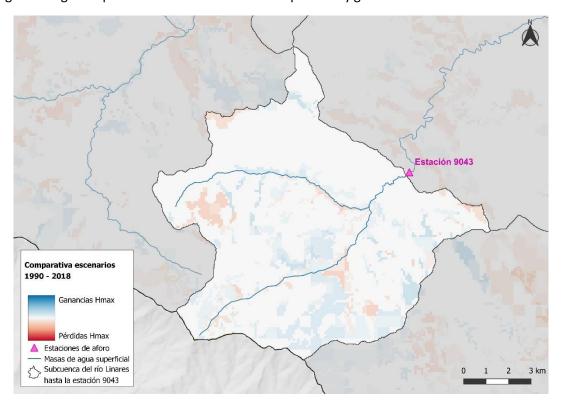


Figura 25. Ganancias vs pérdidas en la subcuenca del río Linares hasta la estación 9043 entre los años 1990 y 2018

Las principales pérdidas de H_{max} se deben a la pérdida de matorral a costa de praderas o terrenos para agricultura en zonas muy puntuales del oeste de la cuenca y en la confluencia del río Linares con la Fuente Marín.

SEPARATA Índice - Pág. 38 de 63

La dinámica general de la cuenca es la del abandono de tierras agrícolas, lo que produce un crecimiento de las zonas de praderas y, sobre todo matorrales, que conlleva un aumento de H_{max} .

5.2.4. Subcuenca del río Isábena hasta la estación 9047

Los resultados del análisis de cambio de usos del suelo en esta subcuenca se pueden ver con detalle en la siguiente tabla expresada en hectáreas.

Tabla 30. Tabulación cruzada de usos de suelo en la subcuenca del río Isábena hasta la estación 9047 (superficie en hectáreas)

				Cobertu	ras del suelo	en 2018				
		OTR	BOS	MAT	PRA	AGR	ESC	ART	Suma	Pérdidas
	OTR	258	62	105	-	105	-	2	532	274
	BOS	4	10.872	1.553	47	333	40	-	12.849	1.977
Coberturas	MAT	21	4.358	9.503	529	583	185	6	15.185	5.682
del suelo	PRA	-	94	1.403	1.486	94	155	-	3.232	1.746
en 1990	AGR	55	1.274	1.516	141	6.077	32	53	9.148	3.071
	ESC	-	131	932	38	77	537	-	1.715	1.178
	ART	-	-	-	-	-	-	-	-	-
	Suma	338	16.791	15.012	2.241	7.269	949	61		
	Ganancias	80	5.919	5.509	755	1.192	412	61		

A continuación se muestra el balance entre las ganancias y las pérdidas.

Tabla 31. Balance de usos del suelo entre 1990 y 2018 en la subcuenca del río Isábena hasta la estación 9047 (hectáreas)

Clase	CLC 1990	CLC 2018	Ganancias	Pérdidas	Balance
Otros	532	338	80	274	-194
Bosque	12.849	16.791	5.919	1.977	3.942
Matorrales	15.185	15.012	5.509	5.682	-173
Prados permanentes	3.232	2.241	755	1.746	-991
Superficies agrícolas	9.148	7.269	1.192	3.071	-1.879
Canchales, roquedos y vegetación escasa	1.715	949	412	1.178	-766
Superficies artificiales	-	61	61	-	-
Total	42.661	42.661	13.928	13.928	-

Las figuras siguientes muestran los usos en los escenarios de 1990 y 2018.

SEPARATA Índice - Pág. 39 de 63

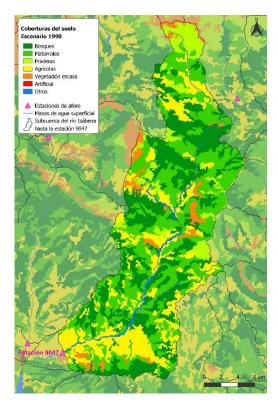


Figura 26. Usos del suelo en la subcuenca del río Isábena hasta la estación 9047 en el año 1990

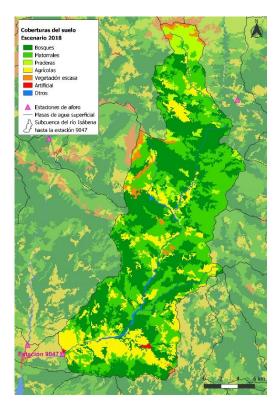


Figura 27. Usos del suelo en la subcuenca del río Isábena hasta la estación 9047 en el año 2018

SEPARATA Índice - Pág. 40 de 63

Tabla 32. Tabulación cruzada de clases de H_{max} en la subcuenca del río Isábena hasta la estación 9047 (superficie en hectáreas)

								Clases de H	_{max} en 2018								
		1	2	3	4	5	6	7	8	9	10	11	12	13	16	Suma	Pérdidas
	1	935	571	-	-	-	-	-	-	-	-	-	-	-	-	1.506	571
	2	71	4.075	-	12	-	-	-	-	-	-	-	-	-	-	4.158	83
	3	-	49	637	602	13	-	8	-	-	-	-	-	-	5	1.314	677
	4	-	8	218	5.540	-	30	-	-	41	-	-	-	-	-	5.837	297
	5	-	-	6	-	924	500	393	-	-	-	-	-	-	1	1.824	900
	6	-	-	11	3	198	2.681	520	-	684	-	-	-	-	2	4.099	1.418
Clases de H _{max}	7	-	-	5	9	82	323	4.633	1	526	1	130	-	-	14	5.724	1.091
en 1990	8	-	-	-	-	6	-	-	1.165	227	196	-	-	-	6	1.600	435
	9	-	-	4	35	-	295	254	118	9.318	553	829	-	-	33	11.439	2.121
	10	-	-	-	-	-	31	-	79	168	2.029	136	27	11	9	2.490	461
	11	-	-	-	-	-	2	20	-	355	62	1.570	26	-	10	2.045	475
	12	-	-	-	-	-	-	-	-	-	-	-	54	27	-	81	27
	13	-	-	-	-	-	-	-	-	-	1	-	6	27	-	34	7
	16	-	-	-	3	4	8	19	13	87	30	109	1	-	258	532	274
	Suma	1.006	4.703	881	6.204	1.227	3.870	5.847	1.376	11.406	2.872	2.774	114	65	338		
	Ganancias	71	628	244	664	303	1.189	1.214	211	2.088	843	1.204	60	38	80		

El balance de H_{max} en esta subcuenca se detalla, clase a clase, en la siguiente tabla.

Tabla 33. Balance de cambios de H_{max} en la subcuenca del río Isábena hasta la estación 9047

Clase	Hmax (mm)	Ganancias (ha)	Pérdidas (ha)	Balance (ha)
1	0 - 5	71	571	- 500
2	6 - 25	628	83	545
3	26 - 50	244	677	- 433
4	51 - 75	664	297	367
5	76 - 100	303	900	- 597
6	101 - 125	1.189	1.418	- 229
7	126 - 150	1.214	1.091	123
8	151 - 175	211	435	- 224
9	176 - 200	2.088	2.121	- 33
10	201 - 225	843	461	382
11	226 - 250	1.204	475	729
12	251 - 299	60	27	33
13	300 - 325	38	7	31
16	> 400	80	274	- 194

La siguiente figura representa la distribución de esas pérdidas y ganancias de H_{max} en esta subcuenca.

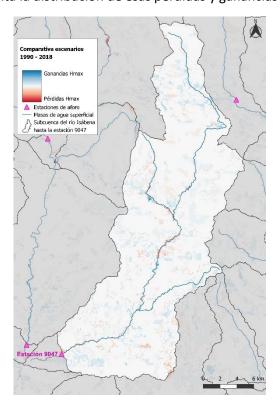


Figura 28. Ganancias vs pérdidas en la subcuenca del río Isábena hasta la estación 9047 entre los años 1990 y 2018

Las pérdidas de H_{max} están muy localizadas, una artificialización en la localidad de Lascuarre y algún retroceso puntual del matorral.

SEPARATA Índice - Pág. 42 de 63

En general, ha habido un aumento del H_{max} en toda la superficie de la cuenca gracias al aumento de los bosques y la disminución de las zonas de vegetación escasa a casi la mitad.

5.2.5. Subcuenca del río Jalón hasta la estación 9058

Los resultados del análisis de cambio de usos del suelo en esta subcuenca se pueden ver con detalle en la siguiente tabla expresada en hectáreas.

Tabla 34. Tabulación cruzada de usos de suelo en la subcuenca del río Jalón hasta la estación 9058 (superficie en hectáreas)

				Cobertu	ras del suelo	en 2018					
		OTR	BOS	MAT	PRA	AGR	ESC	ART	Suma	Pérdidas	
	OTR	-	-	-	-	-	-	-	-	-	
	BOS	-	686	105	36	6	-	-	833	147	
Coberturas	MAT	-	712	4.696	3.465	507	-	39	9.419	4.723	
del suelo	PRA	-	163	1.601	1.995	197	-	32	3.988	1.993	
en 1990	AGR	-	161	877	799	4.343	-	102	6.282	1.939	
	ESC	-	-	-	-	-	-	-	-	-	
	ART	-	-	-	-	-	-	-	-	-	
	Suma	-	1.722	7.279	6.295	5.053	-	173			
	Ganancias	-	1.036	2.583	4.300	710	-	173			

A continuación se muestra el balance entre las ganancias y las pérdidas.

Tabla 35. Balance de usos del suelo entre 1990 y 2018 en la subcuenca del río Jalón hasta la estación 9058 (hectáreas)

Clase	CLC 1990	CLC 2018	Ganancias	Pérdidas	Balance
Otros	-	-	-	-	-
Bosque	833	1.722	1.036	147	889
Matorrales	9.419	7.279	2.583	4.723	-2.140
Prados permanentes	3.988	6.295	4.300	1.993	2.307
Superficies agrícolas	6.282	5.053	710	1.939	-1.229
Canchales, roquedos y vegetación escasa	-	-	-	-	-
Superficies artificiales	-	173	173	-	-
Total	20.522	20.522	8.802	8.802	-

Las figuras siguientes muestran los usos en los escenarios de 1990 y 2018.

SEPARATA Índice - Pág. 43 de 63

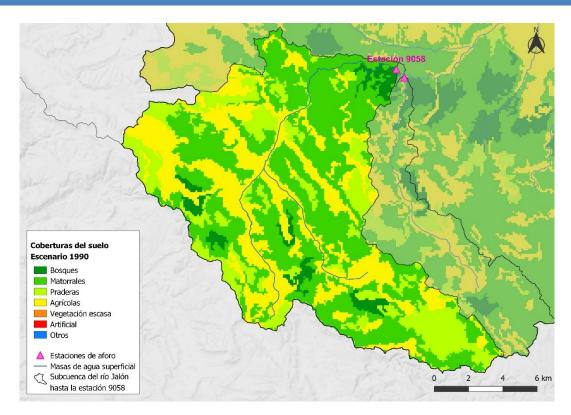


Figura 29. Usos del suelo en la subcuenca del río Jalón hasta la estación 9058 en el año 1990

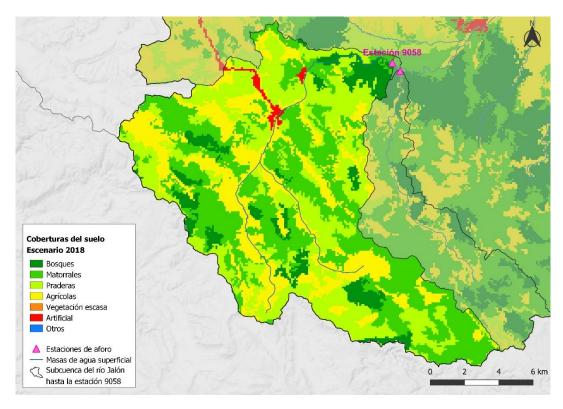


Figura 30. Usos del suelo en la subcuenca del río Jalón hasta la estación 9058 en el año 2018

SEPARATA Índice - Pág. 44 de 63

Tabla 36. Tabulación cruzada de clases de H_{max} en la subcuenca del río Jalón hasta la estación 9058 (superficie en hectáreas)

								Clases de H	_{max} en 2018								
		1	2	3	4	5	6	7	8	9	10	11	12	13	16	Suma	Pérdida
	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4	-	-	4	33	-	-	20	-	-	-	-	-	-	-	57	24
	5	-	-	17	-	1.029	13	352	13	-	-	-	-	-	-	1.424	395
	6	-	-	-	-	7	78	5	-	1	-	-	-	-	-	91	13
Clases de	7	-	-	2	160	1.008	26	4.293	295	765	33	9	-	-	-	6.591	2.298
H _{max} en 1990	8	-	-	-	-	21	-	31	412	56	29	3	-	-	-	552	140
	9	-	-	-	-	37	-	1.229	81	2.756	124	224	-	-	-	4.451	1.695
	10	-	-	-	-	-	-	1	24	19	982	248	61	10	-	1.345	363
	11	-	-	-	-	-	-	-	-	42	69	3.494	367	69	-	4.041	547
	12	-	-	-	-	-	-	-	-	-	24	402	1.423	53	-	1.902	479
	13	-	-	-	-	-	-	-	-	-	-	4	2	91	-	97	6
	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Suma	-	-	23	193	2.102	117	5.931	825	3.639	1.261	4.384	1.853	223	-		
	Ganancias	-	-	23	160	1.073	39	1.638	413	883	279	890	430	132	-		

El balance de H_{max} en esta subcuenca se detalla, clase a clase, en la siguiente tabla.

Tabla 37. Balance de cambios de H_{max} en la subcuenca del río Jalón hasta la estación 9058

Clase	Hmax (mm)	Ganancias (ha)	Pérdidas (ha)	Balance (ha)
1	0 - 5	-	-	-
2	6 - 25	-	-	-
3	26 - 50	23	-	23
4	51 - 75	160	24	136
5	76 - 100	1.073	395	678
6	101 - 125	39	13	26
7	126 - 150	1.638	2.298	- 660
8	151 - 175	413	140	273
9	176 - 200	883	1.695	- 812
10	201 - 225	279	363	- 84
11	226 - 250	890	547	343
12	251 - 299	430	479	- 49
13	300 - 325	132	6	126
16	> 400	-	-	-

La siguiente figura representa la distribución de esas pérdidas y ganancias de H_{max} en esta subcuenca.

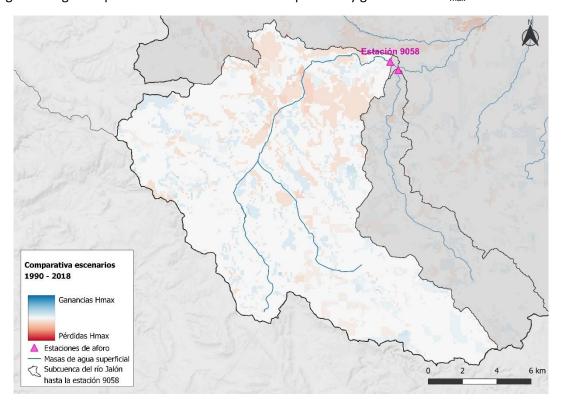


Figura 31. Ganancias vs pérdidas en la subcuenca del río Jalón hasta la estación 9058 entre los años 1990 y 2018

La parte baja de la cuenca ha sufrido las mayores pérdidas de H_{max} debido, por una parte, al retroceso del matorral y por otra la artificialización en el entorno de Medinaceli y Lodares.

SEPARATA Índice - Pág. 46 de 63

Las pocas ganancias de H_{max} que ha experimentado esta subcuenca son gracias al aumento de los bosques, principalmente desde superficies de matorrales.

5.2.6. Subcuenca del río Salazar hasta la estación 9064

Los resultados del análisis de cambio de usos del suelo en esta subcuenca se pueden ver con detalle en la siguiente tabla expresada en hectáreas.

Tabla 38. Tabulación cruzada de usos de suelo en la subcuenca del río Salazar hasta la estación 9064 (superficie en hectáreas)

				Cobertu	ras del suelo	en 2018				
		OTR	BOS	MAT	PRA	AGR	ESC	ART	Suma	Pérdidas
	OTR	-	-	-	-	-	-	-	-	-
	BOS	-	24.048	873	475	416	7	3	25.822	1.774
Coberturas	MAT	-	3.112	3.527	1.226	226	22	3	8.116	4.589
del suelo	PRA	-	64	62	365	-	-	-	491	126
en 1990	AGR	-	1.292	415	591	3.016	-	30	5.344	2.328
	ESC	-	11	4	-	-	21	-	36	15
	ART	-	-	-	-	-	-	-	-	-
	Suma	-	28.527	4.881	2.657	3.658	50	36		
	Ganancias	-	4.479	1.354	2.292	642	29	36		

A continuación se muestra el balance entre las ganancias y las pérdidas.

Tabla 39. Balance de usos del suelo entre 1990 y 2018 en la subcuenca del río Salazar hasta la estación 9064 (hectáreas)

Clase	CLC 1990	CLC 2018	Ganancias	Pérdidas	Balance
Otros	-	-	-	-	-
Bosque	25.822	28.527	4.479	1.774	2.705
Matorrales	8.116	4.881	1.354	4.589	-3.235
Prados permanentes	491	2.657	2.292	126	2.166
Superficies agrícolas	5.344	3.658	642	2.328	-1.686
Canchales, roquedos y vegetación escasa	36	50	29	15	14
Superficies artificiales	-	36	36	-	-
Total	39.809	39.809	8.832	8.832	-

Las figuras siguientes muestran los usos en los escenarios de 1990 y 2018.

SEPARATA Índice - Pág. 47 de 63

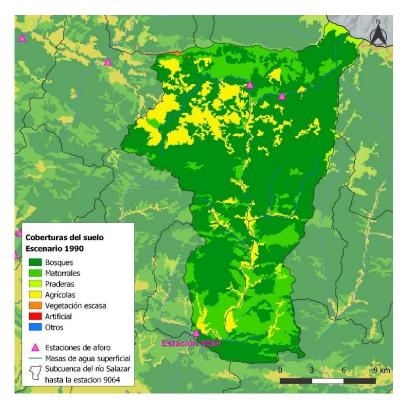


Figura 32. Usos del suelo en la subcuenca del río Salazar hasta la estación 9064 en el año 1990

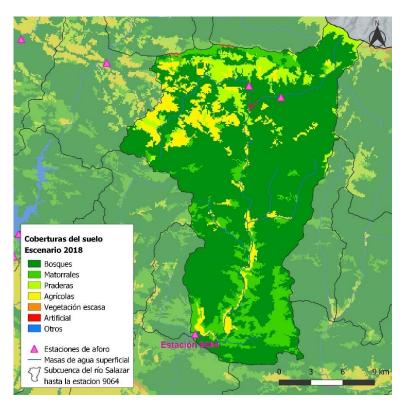


Figura 33. Usos del suelo en la subcuenca del río Salazar hasta la estación 9064 en el año 2018

SEPARATA Índice - Pág. 48 de 63

Tabla 40. Tabulación cruzada de clases de H_{max} en la subcuenca del río Salazar hasta la estación 9064 (superficie en hectáreas)

								Clases de H	I _{max} en 2018								
		1	2	3	4	5	6	7	8	9	10	11	12	13	16	Suma	Pérdidas
	1	117	17	-	-	-	-	-	-	-	-	-	-	-	-	134	17
	2	266	1.619	-	10	-	-	-	-	-	-	-	-	-	-	1.895	276
	3	-	-	131	64	-	-	-	-	-	-	-	-	-	-	195	64
	4	-	8	368	3.815	-	2	-	-	-	-	-	-	-	-	4.193	378
	5	-	-	-	-	158	79	151	-	-	-	-	-	-	-	388	230
	6	-	-	26	-	-	967	276	-	669	-	-	-	-	-	1.938	971
Clases de H _{max}	7	-	-	-	-	62	256	6.895	-	88	-	-	-	-	-	7.301	406
en 1990	8	-	-	-	-	3	-	-	1.283	285	398	-	-	-	-	1.969	686
	9	-	-	6	-	1	182	576	63	13.165	955	195	-	-	-	15.143	1.978
	10	-	-	-	-	-	-	-	161	194	4.689	138	1	-	-	5.183	494
	11	-	-	-	-	-	-	-	4	72	61	1.193	-	-	-	1.330	137
	12	-	-	-	-	-	-	-	-	-	7	11	128	-	-	146	18
	13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Suma	383	1.644	531	3.889	224	1.486	7.898	1.511	14.473	6.110	1.537	129	-	-		
	Ganancias	266	25	400	74	66	519	1.003	228	1.308	1.421	344	1	-	-		

El balance de H_{max} en esta subcuenca se detalla, clase a clase, en la siguiente tabla.

Tabla 41. Balance de cambios de H_{max} en la subcuenca del río Salazar hasta la estación 9064

Clase	Hmax (mm)	Ganancias (ha)	Pérdidas (ha)	Balance (ha)
1	0 - 5	266	17	249
2	6 - 25	25	276	- 251
3	26 - 50	400	64	336
4	51 - 75	74	378	- 304
5	76 - 100	66	230	- 164
6	101 - 125	519	971	- 452
7	126 - 150	1.003	406	597
8	151 - 175	228	686	- 458
9	176 - 200	1.308	1.978	- 670
10	201 - 225	1.421	494	927
11	226 - 250	344	137	207
12	251 - 299	1	18	- 17
13	300 - 325	-	-	-
16	> 400	-	-	-

La siguiente figura representa la distribución de esas pérdidas y ganancias de Hmax en esta subcuenca.

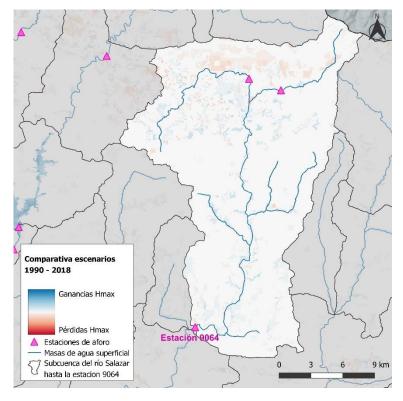


Figura 34. Ganancias vs pérdidas en la subcuenca del río Salazar hasta la estación 9064 entre los años 1990 y 2018

Las pérdidas de H_{max} se localizan en la cabecera de la cuenca, donde el matorral ha dejado su espacio a las praderas en su mayor parte. Esto podría deberse a algún incendio o a la aparición de actividad ganadera en esa zona.

SEPARATA Índice - Pág. 50 de 63

Puntualmente, el crecimiento de la localidad de Ochagavia con la artificialización que conlleva, ha producido una pérdida de H_{max} en la confluencia del río Anduña y el río Zatoia.

Las ganancias, por otra parte, están repartidas por toda la cuenca y responden a la transformación del matorral en bosque. El matorral ha perdido casi la mitad de su superficie, en su mayor parte a favor del bosque.

5.2.7. Subcuenca del río Fortanete hasta la estación 9088

Los resultados del análisis de cambio de usos del suelo en esta subcuenca se pueden ver con detalle en la siguiente tabla expresada en hectáreas.

Tabla 42. Tabulación cruzada de usos de suelo en la subcuenca del río Fortanete hasta la estación 9088 (superficie en hectáreas)

				Cobertu	ras del suelo	en 2018				
		OTR	BOS	MAT	PRA	AGR	ESC	ART	Suma	Pérdidas
	OTR	-	-	-	-	-	-	-	-	-
	BOS	-	12.799	750	84	14	98	-	13.745	946
Coberturas	MAT	-	2.998	6.263	442	33	274	-	10.010	3.747
del suelo	PRA	-	125	253	1.172	-	5	-	1.555	383
en 1990	AGR	-	243	445	675	917	23	-	2.303	1.386
	ESC	-	31	147	25	-	309	-	512	203
	ART	-	-	-	-	-	-	-	-	-
	Suma	-	16.196	7.858	2.398	964	709	-		
	Ganancias	-	3.397	1.595	1.226	47	400	-		

A continuación se muestra el balance entre las ganancias y las pérdidas.

Tabla 43. Balance de usos del suelo entre 1990 y 2018 en la subcuenca del río Fortanete hasta la estación 9088 (hectáreas)

Clase	CLC 1990	CLC 2018	Ganancias	Pérdidas	Balance
Otros	-	-	-	-	-
Bosque	13.745	16.196	3.397	946	2.451
Matorrales	10.010	7.858	1.595	3.747	-2.152
Prados permanentes	1.555	2.398	1.226	383	843
Superficies agrícolas	2.303	964	47	1.386	-1.339
Canchales, roquedos y vegetación escasa	512	709	400	203	197
Superficies artificiales	-	-	-	-	-
Total	28.125	28.125	6.665	6.665	-

Las figuras siguientes muestran los usos en los escenarios de 1990 y 2018.

SEPARATA Índice - Pág. 51 de 63

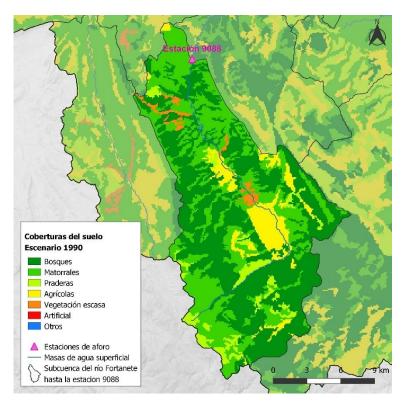


Figura 35. Usos del suelo en la subcuenca del río Fortanete hasta la estación 9088 en el año 1990

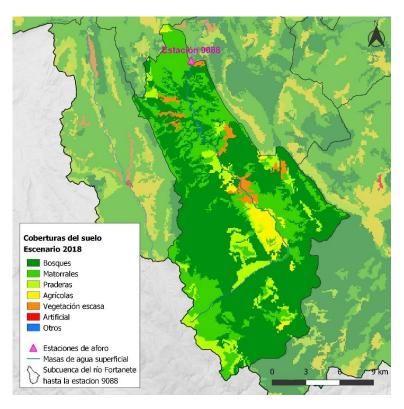


Figura 36. Usos del suelo en la subcuenca del río Fortanete hasta la estación 9088 en el año 2018

SEPARATA Índice - Pág. 52 de 63

Tabla 44. Tabulación cruzada de clases de H_{max} en la subcuenca del río Fortanete hasta la estación 9088 (superficie en hectáreas)

								Clases de H	_{max} en 2018								
		1	2	3	4	5	6	7	8	9	10	11	12	13	16	Suma	Pérdidas
	1	3	2	-	-	-	-	-	-	-	-	-	-	-	-	5	2
	2	8	117	-	-	-	-	-	-	-	-	-	-	-	-	125	8
	3	-	9	191	42	-	-	5	-	-	-	-	-	-	-	247	56
	4	-	68	23	1.531	21	-	62	-	76	-	-	-	-	-	1.781	250
	5	-	-	-	-	305	19	82	37	15	2	-	-	-	-	460	155
	6	-	-	-	-	-	274	119	-	81	3	-	-	-	-	477	203
Clases de H _{max}	7	-	-	59	56	22	19	3.752	89	133	53	17	-	-	-	4.200	448
en 1990	8	-	-	-	6	-	-	34	798	281	37	9	-	-	-	1.165	367
	9	-	-	-	29	106	7	187	4	8.911	1.051	137	-	-	-	10.432	1.521
	10	-	-	-	-	11	-	38	7	144	3.327	281	6	15	-	3.829	502
	11	-	-	-	-	-	-	1	-	14	78	4.922	14	-	-	5.029	107
	12	-	-	-	-	-	-	-	-	-	-	-	110	-	-	110	-
	13	-	-	-	-	-	-	-	-	-	-	-	8	252	-	260	8
	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Suma	11	196	273	1.664	465	319	4.280	935	9.655	4.551	5.366	138	267	-		
	Ganancias	8	79	82	133	160	45	528	137	744	1.224	444	28	15	-		

El balance de H_{max} en esta subcuenca se detalla, clase a clase, en la siguiente tabla.

Tabla 45. Balance de cambios de H_{max} en la subcuenca del río Fortanete hasta la estación 9088

Clase	Hmax (mm)	Ganancias (ha)	Pérdidas (ha)	Balance (ha)
1	0 - 5	8	2	6
2	6 - 25	79	8	71
3	26 - 50	82	56	26
4	51 - 75	133	250	- 117
5	76 - 100	160	155	5
6	101 - 125	45	203	- 158
7	126 - 150	528	448	80
8	151 - 175	137	367	- 230
9	176 - 200	744	1.521	- 777
10	201 - 225	1.224	502	722
11	226 - 250	444	107	337
12	251 - 299	28	-	28
13	300 - 325	15	8	7
16	> 400	-	-	-

La siguiente figura representa la distribución de esas pérdidas y ganancias de H_{max} en esta subcuenca.

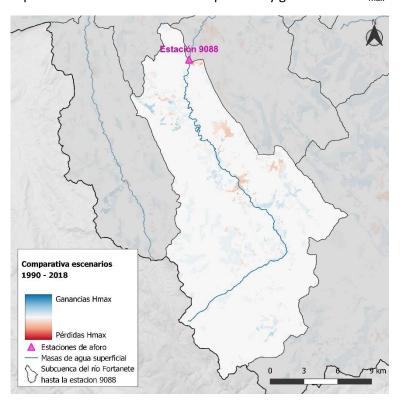


Figura 37. Ganancias vs pérdidas en la subcuenca del río Fortanete hasta la estación 9088 entre los años 1990 y 2018

Las zonas en tonos rojos que muestran las pérdidas de H_{max} se corresponden con un aumento de superficies con vegetación escasa, principalmente desde el matorral.

SEPARATA Índice - Pág. 54 de 63

Por el contrario, las ganancias se deben a la pérdida de zonas agrícolas a favor de praderas y matorrales y el aumento de zonas boscosas, también desde el matorral.

5.2.8. Subcuenca del río Híjar hasta la estación 9203

Los resultados del análisis de cambio de usos del suelo en esta subcuenca se pueden ver con detalle en la siguiente tabla expresada en hectáreas.

Tabla 46. Tabulación cruzada de usos de suelo en la subcuenca del río Híjar hasta la estación 9203 (superficie en hectáreas)

		OTR	BOS	MAT	PRA	AGR	ESC	ART	Suma	Pérdidas
	OTR	-	-	-	-	-	-	-	-	-
	BOS	-	2.176	331	35	64	8	-	2.614	438
Coberturas	MAT	-	323	5.665	950	344	259	-	7.541	1.876
del suelo en 1990	PRA	-	13	64	296	21	-	-	394	98
	AGR	-	53	136	115	2.805	8	73	3.190	385
	ESC	-	15	265	18	-	198	-	496	298
	ART	-	-	86	18	5	123	18	250	232
	Suma	-	2.580	6.547	1.432	3.239	596	91		
	Ganancias	-	404	882	1.136	434	398	73		

A continuación se muestra el balance entre las ganancias y las pérdidas.

Tabla 47. Balance de usos del suelo entre 1990 y 2018 en la subcuenca del río Híjar hasta la estación 9203 (hectáreas)

Clase	CLC 1990	CLC 2018	Ganancias	Pérdidas	Balance
Otros	-	-	-	-	-
Bosque	2.614	2.580	404	438	-34
Matorrales	7.541	6.547	882	1.876	-994
Prados permanentes	394	1.432	1.136	98	1.038
Superficies agrícolas	3.190	3.239	434	385	49
Canchales, roquedos y vegetación escasa	496	596	398	298	100
Superficies artificiales	250	91	73	232	-159
Total	14.485	14.485	3.327	3.327	-

Las figuras siguientes muestran los usos en los escenarios de 1990 y 2018.

SEPARATA Índice - Pág. 55 de 63

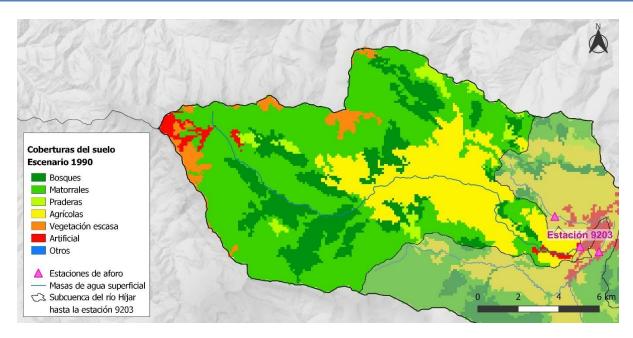


Figura 38. Usos del suelo en la subcuenca del río Híjar hasta la estación 9203 en el año 1990

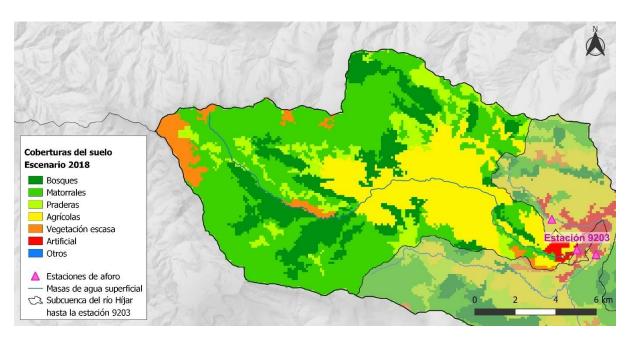


Figura 39. Usos del suelo en la subcuenca del río Híjar hasta la estación 9203 en el año 2018

SEPARATA Índice - Pág. 56 de 63

Tabla 48. Tabulación cruzada de clases de H_{max} en la subcuenca del río Híjar hasta la estación 9203 (superficie en hectáreas)

								Clases de H	_{max} en 2018								
		1	2	3	4	5	6	7	8	9	10	11	12	13	16	Suma	Pérdidas
	1	47	71	-	-	-	-	-	-	-	-	-	-	-	-	118	71
	2	101	1.691	13	132	-	-	-	-	-	-	-	-	-	-	1.937	246
	3	-	-	152	34	5	36	59	-	25	-	-	-	-	-	311	159
	4	-	6	303	2.710	-	-	-	-	27	-	-	-	-	-	3.046	336
	5	-	-	-	-	194	15	38	2	9	10	9	-	-	-	277	83
	6	-	-	-	-	217	801	41	-	33	-	-	-	-	-	1.092	291
Clases de H _{max}	7	-	-	36	-	46	184	1.857	-	87	-	7	-	-	-	2.217	360
en 1990	8	-	-	-	-	1	-	1	386	13	6	-	-	-	-	407	21
	9	-	-	-	75	60	78	289	42	2.866	4	32	-	-	-	3.446	580
	10	-	-	-	-	12	-	1	18	39	901	96	8	-	-	1.075	174
	11	-	-	-	-	-	-	7	-	72	12	430	-	-	-	521	91
	12	-	-	-	-	-	-	-	-	-	2	-	31	-	-	33	2
	13	-	-	-	-	-	-	-	-	-	-	-	1	-	-	1	1
	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Suma	148	1.768	504	2.951	535	1.114	2.293	448	3.171	935	574	40	-	-		
	Ganancias	101	77	352	241	341	313	436	62	305	34	144	9	-	-		

El balance de H_{max} en esta subcuenca se detalla, clase a clase, en la siguiente tabla.

Table 40 Palance de	combine do U — on	a cubeuonea dal río	. Uíiar hacta la actación 0202
l abia 45. Dalalice de	CdIIIDIOS UE Fimay EII	a subcuenca dei no	Híjar hasta la estación 9203

Clase	Hmax (mm)	Ganancias (ha)	Pérdidas (ha)	Balance (ha)
1	0 - 5	101	71	30
2	6 - 25	77	246	- 169
3	26 - 50	352	159	193
4	51 - 75	241	336	- 95
5	76 - 100	341	83	258
6	101 - 125	313	291	22
7	126 - 150	126 - 150 436 36		76
8	151 - 175	62	21	41
9	176 - 200	305	580	- 275
10	201 - 225	34	174	- 140
11	226 - 250	144	91	53
12	251 - 299	9	2	7
13	300 - 325	-	1	- 1
16	> 400	-	-	-

La siguiente figura representa la distribución de esas pérdidas y ganancias de H_{max} en esta subcuenca.

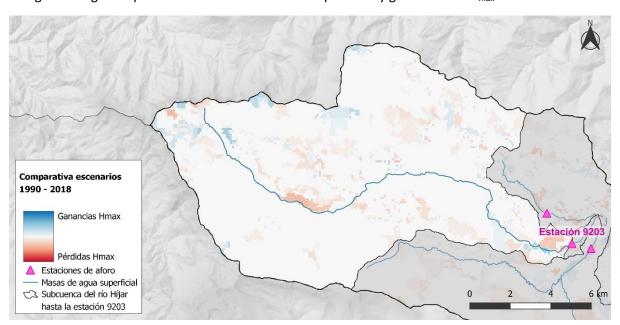


Figura 40. Ganancias vs pérdidas en la subcuenca del río Híjar hasta la estación 9203 entre los años 1990 y 2018

La mayor parte de los cambios de H_{max} en la cabecera de la cuenca son a causa de una diferencia de criterio al clasificar la cobertura del suelo entre el CLC de 1990 y el de 2018. Son zonas de alta montaña que pasan de vegetación escasa a matorral y la pista de esquí de Alto Campoo que pasa de estar clasificada como artificial a ser vegetación escasa.

También se puede apreciar una disminución de H_{max} en las localidades de Villacantid, Barrio y Naveda debido al aumento de la superficie agrícola en esa zona.

SEPARATA Índice - Pág. 58 de 63

En la zona próxima a la estación, se ha construido un campo de golf sobre un terreno agrícola, aumentando el H_{max} , aunque en la figura aparezca en color rojo porque el campo de golf se considera superficie artificial.

Todas estas particularidades hacen que esta subcuenca no sea representativa para el objetivo de este estudio, por lo que no se incorporan los datos obtenidos en su análisis.

5.3. Relación entre los cambios de uso y las aportaciones

Tras el estudio de la información, 4 de las 8 subcuencas inicialmente seleccionadas han sido descartadas para este análisis:

- 9031, río Bergantes en Zorita. El modelo SIMPA en esta cuenca sobrevalora las aportaciones en gran medida haciendo que sea dudosa la representatividad de la simulación para este punto de aforo. Este hecho puede ser fruto de un dispar trazado de la cuenca vertiente u otras circunstancias locales.
- 9040, río Ara en Boltaña. El registro hidrométrico presenta una laguna en torno a los años 1994 a 1997 que parece indicar una ligera heterogeneidad entre la serie anterior y posterior a esta etapa. Además la asignación de usos del suelo del CLC de 1990 y 2018 en esta zona presenta algunos cambios de criterio que también dificultan su uso.
- 9088, río Fortanete en Pitarque. De modo similar a lo indicado para la estación del río Ara en Boltaña, esta tiene una laguna en su registro de aportaciones entre los años 2009 a 2015 donde se produce una heterogeneidad entre la serie previa y posterior a estos años.
- 9203, río Hijar en Reinosa. En esta zona, la identificación de usos del suelo de CLC de 1990 y 2018, presenta ciertos cambios de criterio que dificultan su utilización.

La tabla siguiente muestra los resultados en las 4 subcuencas restantes. En cada una de ellas se ha aplicado un procedimiento análogo al utilizado para la cuenca completa del Ebro, evaluando el porcentaje de variación total de la aportación entre los años 1990 y 2018¹ que puede considerarse atribuible exclusivamente a los cambios en los usos del suelo, según la metodología aplicada en este estudio basada directamente en la conceptualización del modelo SIMPA.

Tabla 50. Resumen de la variación teórica de la aportación según cambios de uso del suelo y comparación con el registro hidrométrico en las subcuencas seleccionadas

Código	Nombre	Variación teórica apor. ⁽¹⁾ (%)	Análisis hidrométrico ⁽²⁾
9043	Río Linares en San Pedro Manrique	- 1,33%	No se aprecia tendencia significativa
9047	Río Isábena en Capella	- 0,81%	No se aprecia tendencia significativa
9058	Río Jalón en Jubera	+ 0,88%	Tendencia al aumento relativo de la apor.
9064	Río Salazar en Aspurz	- 0,54%	Tendencia a la disminución relativa de la apor.

⁽¹⁾ Corresponde a la variación total estimada de la aportación, entre 1990 y 2018, debida exclusivamente a la variación de los usos del suelo entre esos años, según el procedimiento teórico descrito en este estudio

SEPARATA Índice - Pág. 59 de 63

⁽²⁾ El procedimiento y las gráficas pueden consultarse en el punto 5.2.

¹ Se trata del porcentaje de variación referido al año inicial y final del periodo en análisis (1990 – 2018) y no a la variación anual dentro del periodo que es mucho menor.

En las estaciones de aforo río Linares en San Pedro Manrique y río Isábena en Capella, a pesar de que la evolución de los usos del suelo señala una disminución del parámetro Hmax y por lo tanto es de esperar un incremento de las aportaciones, el análisis hidrológico no detecta tendencias significativas.

Sin embargo, tanto en la estación río Jalón en Jubera como en Río Salazar en Aspurz, las tendencias apuntadas por los cambios de uso del suelo son coherentes con el análisis hidrológico de los datos aforados ponderados por los simulados mediante SIMPA 2019.

SEPARATA Índice - Pág. 60 de 63

6. CONCLUSIONES Y TRABAJOS FUTUROS

En primer lugar, es necesario hacer una reflexión sobre el concepto de régimen natural. El régimen hidrológico natural, o también denominado en ocasiones inalterado, suele entenderse como el que se produciría en ausencia de detracción de agua y/o regulación, ya que estas dos presiones antropogénicas tienen un impacto directo. Sin embargo, es obvio que existen otros condicionantes no naturales que afectan significativamente al régimen hidrológico, es el caso del cambio climático y las modificaciones en los usos del suelo.

Para la cuantificación del efecto del cambio climático se han desarrollado numerosos trabajos, por el contrario, el análisis de las consecuencias de los cambios de uso del suelo desde el punto de vista de la planificación hidrológica no es un enfoque integrado en los procesos habituales de esta.

El presente análisis se ha centrado en tratar de discriminar la variación de la magnitud de las aportaciones en régimen natural en la cuenca del Ebro debidas exclusivamente a los cambios de uso del territorio, sin considerar cualquier otra variación por razones climatológicas: cambios en la precipitación y en la temperatura.

El planteamiento aplicado se basa en la conceptualización que sigue el modelo de transformación precipitación-aportación SIMPA desarrollado por el CEDEX.

Se ha realizado el análisis tanto para el conjunto de la demarcación como para una selección de cuencas vertientes a estaciones de aforo en las que la modificación del régimen hidrológico debida a extracción de agua o a su regulación se puede considerar despreciable

Las conclusiones fundamentales obtenidas son las siguientes:

1) Los cambios de uso del suelo del año 1990 al 2018 en la cuenca del Ebro, que se sintetizan en la Tabla 8 de tabulación cruzada, muestran como tendencias predominantes la evolución del matorral a bosque y el abandono de zonas agrícolas que pasan a praderas y matorral. Como resultado final en el periodo analizado obtenemos un incremento significativo de la superficie forestal frente a una disminución de la agrícola.

Clase	CLC 1990	CLC 2018	Ganancias	Pérdidas	Balance
Otros	67.914	68.375	18.121	17.660	461
Bosque	1.894.404	2.281.890	686.451	298.965	387.486
Matorrales	1.882.640	1.732.346	678.087	828.381	-150.294
Prados permanentes	324.719	421.788	258.517	161.448	97.069
Superficies agrícolas	4.120.945	3.785.003	274.136	610.078	-335.942
Canchales, roquedos y vegetación escasa	214.885	154.328	54.068	114.625	-60.557
Superficies artificiales	50.673	112.450	70.871	9.094	61.777
Total	8.556.180	8.556.180	2.040.251	2.040.251	0

2) Con la metodología descrita, se ha estimado que en la cuenca del Ebro en su conjunto se ha producido una reducción de la aportación del 0,49% entre los años 1990 y 2018, es decir una disminución de 76 hm³/año, debida exclusivamente a las modificaciones en el

SEPARATA Índice - Pág. 61 de 63

uso del territorio. En CHE (2001)², aplicando distinta metodología, se estimó una disminución de 34 hm³/año para el periodo 1970-1991.

- 3) Este valor de reducción en la aportación es de una magnitud muy inferior a las estimaciones existentes de disminución por causa del cambio climático, que en el conjunto de la cuenca del Ebro y para 2039, se cifran en un 5% de reducción en las aportaciones, tal y como se recoge en el Plan Hidrológico 2022-2027.
- 4) El análisis de detalle realizado en el caso de las subcuencas seleccionadas no arroja resultados concluyentes.

Para interpretar correctamente estas conclusiones, conviene señalar que el procedimiento aplicado se ha visto condicionado por varios factores:

- El periodo máximo del que se pueden obtener datos espaciales de usos del territorio, detallados y relativamente homogéneos, está limitado por la existencia de imágenes de satélite. En concreto se han utilizado datos del CORINE Land Cover (CLC). En consecuencia, el periodo de estudio se ha reducido a los 29 años que van entre 1990 y 2018, que resulta algo escaso ya que hay grandes transformaciones históricas que son previas a ese periodo.
- El análisis detallado de las imágenes de satélite muestra como en ocasiones se producen cambios de criterio en los procesos de identificación de las clases de usos, lo que puede introducir ciertas incertidumbres e, incluso, producir ciertos sesgos en la asignación de usos entre diferentes años.
- El procedimiento del modelo SIMPA ha debido ser ajustado a las características de los CLC de distintos años, obligando a nuevas reclasificaciones.
- La transformación precipitación-escorrentía de SIMPA ha sido aplicada de modo simplificado ya que no se ha trabajado con el modelo distribuido sino con extrapolaciones basadas en un modelo medio agregado.
- La repercusión de los cambios de uso del suelo sobre la aportación se ha considerado dependiente de las consecuentes modificaciones del parámetro del modelo H_{max}, sin tener en cuenta los cambios en el coeficiente de excedente C. Este parámetro funciona en el mismo sentido y depende de las mismas variables fisiográficas que el parámetro H_{max} y, aunque su repercusión sea menor, de modo que si fuera posible su consideración es de esperar que el porcentaje de reducción de las aportaciones estimadas sería algo mayor.

Al hilo de estas conclusiones se enumeran algunos trabajos que pudiera resultar de interés desarrollar a futuro:

- Estudio de posibles sesgos en la identificación de los usos más relevantes del territorio entre versiones de CORINE.
- Aplicación de los procedimientos planteados en el presente estudio utilizando el modelo distribuido completo de SIMPA. Esta operación, en principio, solo la podría realizar el CEDEX ya que se requiere el manejo de SIMPA, herramienta específica no preparada para su utilización por terceros. La realización de trabajos en esta línea es de esperar que:
 - o produzca mejoras en la comprensión de las relaciones entre las variables fisiográficas y los parámetros H_{max} y C, y su consecuente cuantificación, y

_

² CHE (2001) La cubierta forestal de la cuenca del Ebro: caracterización de la evolución espacio-temporal y análisis de tendencias. Entidad colaboradora: CSIC (Instituto Jaume Almera).

- o una evaluación más ajustada de las repercusiones, en las aportaciones y en el propio concepto de régimen natural, de los cambios en los usos del suelo.
- Los nuevos desarrollos podrían ser comprobados en cuencas piloto elegidas al efecto.

Las consideraciones expuestas no deben ser descontextualizadas ya que, si bien es cierto que la evolución de un territorio de pradera a matorral y posteriormente a bosque supone una reducción de la magnitud de los recursos disponibles, deben tenerse en cuenta conjuntamente otras cuestiones como la importancia de la biodiversidad o la mejora en la retención del suelo que también colabora en una menor colmatación de los embalses, entre otras muchas consideraciones no menos relevantes.

SEPARATA Índice - Pág. 63 de 63