

ASISTENCIA TÉCNICA PARA LA ACTUALIZACIÓN LIMNOLÓGICA DE EMBALSES

EMBALSE DE RIALB

2002

1. EMBALSE DE RIALB

El embalse de Rialb está destinado a la regulación del río Segre, aguas abajo de Oliana, y tiene como finalidad cubrir las demandas de riegos del canal de Urgel (60.000 ha) y del futuro canal Segarra-Garrigues (49.000 ha), así como reforzar el abastecimiento de municipios del área. El embalse (figura 1.-1, fotos 1 a 4) se encuentra en sus primeros años de funcionamiento y en fase de llenado. Tiene una capacidad máxima de 402 hm³ (cota 430 m s.n.m.).

En el muestreo realizado el día 5 de septiembre del 2.002, el embalse se encontró en la cota 380, esto es 22 m por debajo de la cota máxima (en la cota 503,72), y supone un volumen embalsado de 17,6 hm³ (4,37% de la capacidad de embalse). En la serie hidrológica disponible (años 1999-2001) el volumen máximo alcanza menos del 40% de la capacidad máxima (figura 1.-2). El tiempo de residencia es bajo en toda la serie (en general inferior a 1 mes).

Los resultados de los análisis realizados se presentan en las tablas 1.-1 (datos físicoquímicos del agua y sedimento) y tabla 1.-2 (fitoplancton), y en la figura 1.-3 (perfiles).

1.1. RESULTADOS DEL DIAGNÓSTICO LIMNOLÓGICO DE 2002

1.1.1. Agua

1.1.1.1 Temperatura

El embalse se encuentra estratificado. En la presa se identifican dos termoclinas, una de menor gradiente situada entre los 6 y 11 m de profundidad, y otra profunda y más acusada a partir de los 20 m de profundidad (figura 1.-3). La temperatura de la superficie es de 22,4 °C y la de fondo de 12,3°C (a 22 m), lo que supone un gradiente medio de 0,45°C/m. En la zona media y en la cola del embalse el gradiente térmico es menos acusado por la menor profundidad. Esta estructura térmica de la masa de agua es similar a la que se encontró en el verano del 2001.

Las aguas aportadas por los tributarios son frías, especialmente la del río Segre (18,17 °C) que proviene del hipolimnion del embalse de Oliana, y la del río Rialb (16,54 °C); las aguas de la Rivera Salada son más cálidas (22,18 °C). Las aguas vertidas por la presa presentaron una temperatura (19,57 °C) acorde con la de los niveles medios del hipolimnion (tabla 1.-1).

1.1.1.2 Transparencia

La transparencia del agua es moderada-alta en la presa y disminuye hacia la cola. Los valores de la profundidad de visión del disco de Secchi y de la turbidez del agua de superficie son los siguientes:

	RI-1 Presa	RI-2 Medio	RI-3 Cola
Prof. Disco Secchi (m)	2,44	2,13	1,43
Turbidez (NTU) sup.	1,0	1,9	3,4
Turbidez (NTU) fondo	29-133	19-297	8-196

El perfil de turbidez (figura 1.-3) muestra el incremento de los valores hacia el fondo. Esto está favorecido por las aportaciones de los tributarios y por la resuspensión de lodos que produce aguas muy turbias en la capa adyacente al fondo. En los tributarios, la concentración de sólidos en suspensión es elevada en el río Rialb (175 mg/L) y en el Segre (34 mg/L).

En la presa la transparencia del agua está influida por la producción del fitoplancton (10 mg/m³ de clorofila en la superficie). La concentración de sólidos en suspensión es baja en superficie (1,4 mg/L) y aumenta en el fondo (34,3 mg/L) (tabla 1.-1).

1.1.1.3 Mineralización

La conductividad del agua es moderada y homogénea en el embalse (alrededor de 270 μ S/cm) (figura 1.-3). En la presa se identifica una clina por debajo de los 20 m de profundidad coincidente con la termoclina profunda. Esta agua del fondo es turbia (30-133 ntu) y presenta una conductividad de 400 μ S/cm. Las aguas son ricas en calcio (40-64 mg/L) y presentan una alcalinidad entre 1,7 y 3,8 meq/L.

Los tributarios aportan agua con una conductividad similar al rango que se mide en el embalse (261 μ S/cm en el río Segre, 253 μ S/cm en el río Rialb y 398 μ S/cm en la Rivera Salada). Las concentraciones de calcio (49-68 mg/L) y de la alcalinidad (2-3 meg/L) son elevadas.

El pH es básico, con valores de 9 en el epilimnion por la producción primaria y <8 hasta 7,5 en el hipolimnion.

1.1.1.4 Nutrientes

Las concentraciones de nutrientes son moderado-altas y en general acordes con los rangos obtenidos en el muestreo estacional realizado en el 2001:

	Embalse	Rango 2001	Tributario	Rango 2001
Nitrato (mg/L)	0,13 - 1,18	<1 - 6,7	0,64	2,3 - 4,3
Nitrito (mg/L)	0,06-0,08	0,02 - 0,25	0,15	0,02 - 0,13
Amonio (mg/L)	0,07 - 11	0,05 - 2,4	0,12	0,08 - 0,4
Fósforo total (mg/L)	0,02 - 1,22	0,03 - 0,66	0,1	0,06 - 0,09
P-PO ₄ (mg/L)	0,002 - 0,34	0,002 - 0,07	0,006	0,004-0,1

Las concentraciones de nitrato son bajas tanto en el embalse como en el río Segre, lo cual es debido al consumo (aguas superficiales) y a la desnitrificación (aguas profundas). Las concentraciones máximas de amonio (11 mg/L) se detectan en el fondo y se deben a las condiciones reductoras existentes. Las concentraciones de fósforo total y fosfato soluble son relativamente elevadas y propias de aguas eutróficas. Los valores máximos se miden en el agua del fondo.

1.1.1.5 Oxígeno disuelto y metales

El embalse está bien oxigenado. En el perfil la concentración de oxígeno disminuye progresivamente hacia el fondo pero sólo se detecta anoxia por debajo de la termoclina profunda (a unos 3 m del fondo) (figura 1.-3). En esta agua se detecta sulfhídrico (0,6 mg/L) y concentraciones elevadas de hierro y manganeso (4,8 y 5,6 mg/L respectivamente) (tabla 1.-1).

1.1.2. Sedimento

El sedimento es muy limoso y presenta aspecto moderadamente reducido, y gas. El carbono es básicamente orgánico (69 mg/g en Peso seco) y los contenidos de nitrógeno (2,9 mg/g) y fósforo (0,53 mg/g) son moderados (tabla 1.-1).

Clasificación de	C inorgánico	C. orgánico	N total	P total
Kelly et al. ¹		mg/g sedime	ento Peso Seco	
Contenido bajo	-	< 26,5	<1,65	<0,22
Contenido medio	-	26,5 – 65,5	1,65 – 57,7	0,22 – 1,17
Contenido elevado	-	65,5 – 85,1	57,7 – 78,5	1,17 – 1,65
Cont. muy elevado	-	>85,1	>78,5	>1,65
Rialb	37	69	2,9	0,53

1.1.3. Organismos

1.1.3.1 Fitoplancton y clorofila

La concentración de clorofila (10,2 mg/m³) es elevada y acorde con la densidad del fitoplancton (tabla 1.-2). El macrofitoplancton es relativamente diverso y está dominado por cianofíceas (*Aphanizomenon flosaquae y Microcystis aeruginosa*) junto con diatomeas (*Fragilaria crotonensis*) y clorofíceas (varias especies). En el microfitoplancton predominan las cianofíceas (77%) y especialmente *Aphanizomenon*. Esta composición es habitual en verano, en los embalses con vocación eutrófica, y muy similar a la que se encontró en agosto del 2001. No obstante la densidad del fitoplancton (7.598 cél./ml) es ligeramente inferior a las que se midieron en junio y agosto del 2001 (9.372 y 13.662 cél./ml).

La presencia de *Microcystis y Aphanizomenon* aunque con densidades moderadas pone de manifiesto la vocación eutrófica del embalse. La proliferación de estas

_

¹ Kelly M., Hite R., Rogers K. 1984. Analysis of superficial sediment from 63 Illinois lakes. *Lake and Reservoir Management*: 248 – 252.

especies, si aumenta el tiempo de permanencia del agua durante el verano, conlleva problemas estéticos y de malos olores (y el posible riesgo de liberación de toxinas).

1.1.3.2 Zoobentos

No aparece zoobentos en la muestra de sedimento extraída en la zona más profunda del embalse. Esto confirma el estado reducido del sedimento y del agua profunda.

1.1.4. Estado trófico

El estado trófico del embalse se define en función de los indicadores de OCDE y del índice del estado trófico de Carlson (TSI).

OCDE:

De acuerdo con los indicadores de la OCDE, el embalse es eutrófico con tendencia a la hipereutrofia (por la elevada concentración de fósforo). No obstante el desarrollo del fitoplancton es relativamente moderado lo que se atribuye a la elevada renovación del agua en el embalse.

Categoría trófica	Fósforo total mg/L (media anual)	Clorofila, mg/L (media anual)	Clorofila, mg/L (máximo anual)	D. de Secchi, m (media anual)	D. de Secchi, m (mínimo anual)
Ultraoligotrófico	<4	<1	<2,5	>12	>6
Oligotrófico	<10	<2,5	<8	>6	>3
Mesotrófico	10-35	2,5-8	8-25	6-3	3-1,5
Eutrófico	35-100	8-25	25-75	3-1,5	1,5-0,7
Hipereutrófico	>100	>25	>75	<1,5	<0,7
Rialb (2001)	142	11,1	20,3	2,5	1,1
Rialb (Sep-2002)	619 ¹	10,22	-	2,42	-

¹ Valor medio superficie y fondo

ÍNDICE DE ESTADO TRÓFICO:

El índice de estado trófico de Carlson (TSI) estimado a partir de la profundidad del Disco de Secchi y las concentraciones de clorofila y de fósforo total, para el dato puntual del muestreo, corresponde a eutrofia (tabla 1 en el Apéndice).

²Valores puntuales de agosto-2.002

Parámetros	Funciones del estado trófico por parámetros	Valor de los parámetros	Valor TSI
DS (m)	TSI(DS) = 60 - 14,41.ln DS	2,4	47
Clorofila (µg/L)	TSI (Clor.) = 9.81.ln Clor. + 30.6	10,2	53
P tot (µg/L)	TSI (P tot) = 14,42.ln P tot. + 4,15	619	97
-	Media $TSI = (TSI (DS) + TSI (Clor.) + TSI (P tot))/3$	-	66

1.1.5. <u>Diagnóstico del emisario</u>

La calidad visual del río Segre aguas abajo de la presa es buena y similar a la del año 2001 (foto 2). En el muestreo el tramo recibía 27,1 m³/s procedentes de los desagües de fondo. El agua vertida está oxigenada puesto que corresponde de niveles hipolimnéticos (cota 365) situados por encima de la oxiclina (la cual se encuentra a partir de la cota 360).

1.2. COMPARACIÓN DE RESULTADOS Y ANÁLISIS DE TENDENCIAS

1.2.1. Estado trófico

La comparación de los parámetros indicadores del estado trófico para el embalse de Rialb correspondiente a los periodos estivales del 2001 y 2002 se muestra en el siguiente cuadro:

		2001	2002
Cota verano	m	389,95	380
Clorofila	mg/m ³	5,3	10,2
Prof. Disco de Secchi	m	3,3	2,4
Índice de Carlson		59	66
Nº Células de Fitoplancton	cél./ml	13.662	7.980
Riesgo de blooms algales		Si	Si
Fosfato ¹	mg/L	<0,05-0,07	0,002 - 0,34

Fósforo total ^l	mg/L	<0,09-0,66	0,02 - 1,22
Amonio fondo	mg/L	2,4	11
Anoxia hipolimnética		Si (4m)	Si (3m)
Zoobentos	Indiv./m²	225	0
ESTADO TRÓFICO		Eutrofia	Eutrofia

¹ Datos de superficie y fondo.

El embalse es eutrófico como en el ciclo anterior. No obstante no se producen proliferaciones acusadas de fitoplancton (cianofíceas) y el hipolimnion se mantiene relativamente oxigenado, sólo se detecta anoxia en la capa adyacente al fondo junto a la presa.

1.2.2. Riesgos ambientales

• Riesgo más importante: En condiciones de vertido de fondo en verano existe riesgo de vertido de aguas anóxicas y con tóxicos (SH₂, NH₄) y de afección a las comunidades biológicas. En el muestreo no se produjo el vertido de aguas anóxicas puesto que la oxiclina se encontró por debajo del nivel de los desagües de fondo.

En el río existe riesgo de afección a la comunidad de peces y en concreto a la población de blenio que habita el tramo inmediato a la presa, en caso de cambios bruscos de caudal.

• Recomendación: A finales de verano se recomienda verter por la toma de riegos que dispone de válvula de chorro hueco. En caso de mantener los vertidos por los desagües de fondo, se recomienda determinar la cota de anoxia en el hipolimnion, y analizar NH₄ y SH₂ si se detecta anoxia en niveles próximos a los desagües de fondo. En todo caso se recomienda no verter agua anóxica y con SH₂, y con concentraciones de NH₄ superiores a 1-2 mg/L.

En el río para reducir los riesgos sobre la comunidad de peces por cambios del caudal de vertido, se recomienda reducir éste de forma paulatina para facilitar a los peces su reingreso en la corriente principal del río. Mantener las recomendaciones de caudales mínimos efectuadas en el estudio específico (ver informe del 2001).

Tabla 1.-1

EMBALSE DE RIALB

Septiembre, 2002

RESULTADOS DEL ESTUDIO HIDROQUÍMICO

		Embalse	- presa	Trib. 1	Trib. 2	Trib. 3	Emisario
	Unidades	Superfície	Fondo	Segre	Rialb	R. Salada	Segre
Profundidad	m	S	22	S	S	S	S
Temperatura	°C	22,4	12,27	18,2	16,5	22,2	19,6
Conductividad	μS/cm	272	438	261	353	398	275
Turbidez	ntu	1,0	29,1	4,8	342,0	6,5	10,7
Sólidos en suspensión	mg/L	1,4	34,3	12,9	175	4,8	-
рН	und.	9,02	7,43	8,26	8,47	8,65	8,4
Alcalinidad	meq/L	1,76	3,78	2,24	3,16	2,90	-
Calcio	mg/L	40,9	64,1	48,9	68,1	61,7	-
Nitrito	mg/L	0,066	0,079	0,15	0,092	0,043	-
Nitrato	mg/L	1,18	0,13	0,64	3,71	1,94	-
Amonio	mg/L	0,07	11,00	0,12	0,17	0,07	-
Fósforo total	mg/L	0,021	1,218	0,099	0,157	0,018	-
Fosfato disuelto (P-PO4)	mg/L	0,002	0,343	0,006	0,004	0,002	-
Oxígeno disuelto	mg/L	9,7	0,0	9,9	9,1	8,3	9,2
Sulfhídrico (SH ₂)	mg/L	-	0,6	-	-	-	-
Hierro	mg/L	<0,01	4,80	0,04	0,03	0,07	-
Manganeso	mg/L	0,045	5,60	0,045	<0,03	0,045	-
Clorofila (superf.)	mg/m3	10,2	-			-	-
Profundidad disco de Secchi	m	2,4	-			-	-

RESULTADOS DEL ESTUDIO DEL SEDIMENTO

		Presa
Carbono orgánico	mg/g C	69
Carbono inorgánico	mg/g Calizas	37
Nitrógeno Total	mg/g sed.P.S.	2,9
Fósforo Total	mg/g sed.P.S.	0,53

Tabla 1.-2

FITOPLANCTON DEL EMBALSE DE RIALB

Septiembre-02

INVENTARIO	Abundancia ¹
CIANOFÍCEAS	
Anabaena sp.	1
Microcystis aeruginosa	3
Aphanizomenon flosaquae	4
DIATOMEAS	
Melosira granulata	1
M. varians	1
Fragilaria crotonensis	4
CLOROFICEAS	
Sphaerocystis schroeteri	2
Coelastrum reticulatum	2
Pediastrum duplex	2
P. chlathratum	2
P. boryanum	1
Dictyosphaerium pulchellum	1
PERIDINEALES	
Ceratium hirundinella	1

 $^{^{1}}$ 5=>61% 4=31-60% 3=11-30% 2=1-10% 1<1% +=presencia

RECUENTOS	Recuentos de células por mililitro ²	Porcentaje	
CIANOFÍCEAS (%)		77,65	
Microcystis aeruginosa	500		
Aphanizomenen flosaquae	5.400		
CRIPTOFÍCEAS (%)		9,50	
Cryptomonas ovata	684		
Rhodomonas minuta	38	_	
CRISOFÍCEAS (%)		2,63	
Flagelados sp. pl.	200		
DIATOMEAS (%)		4,63	
Cyclotella cf. compta	20		
C. meneghiniana	2		
Fragilaria crotonensis	330		
CLOROFÍCEAS (%)		5,55	
Chlamydomonas sp.	38		
Sphaerocystis schroeteri	152		
Oocystis sp. pl.	38		
Ankistrodesmus sp. pl.	2		
Pediastrum duplex	190		
Cosmarium sp.	2		
DINOFÍCEAS %		0,03	
Ceratium hirundinella	2		
TOTAL	7.598	100	

²Concentrado de 50 ml

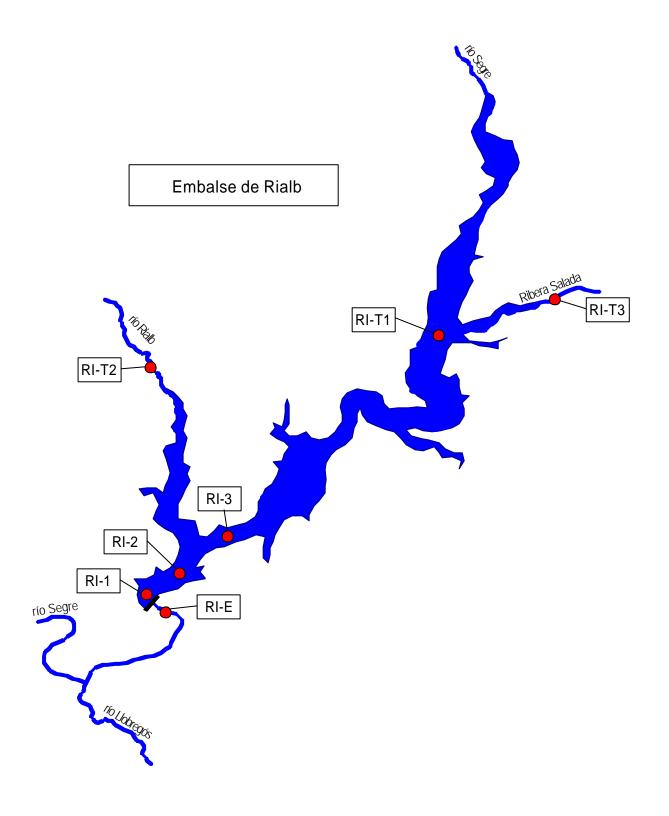
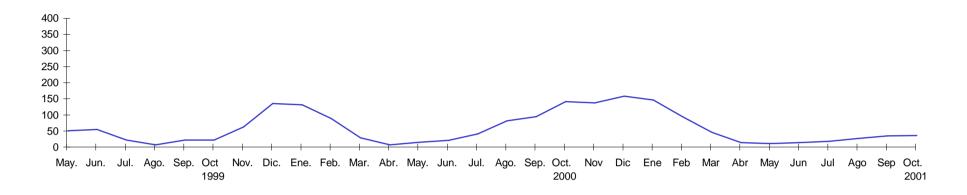



Figura 1.-1. Localización de los puntos de muestreo en el embalse de Rialb, en el verano de 2002.

EMBALSE DE RIALB

VOLUMEN EMBALSADO (hm³)

TIEMPO DE RESIDENCIA (meses)

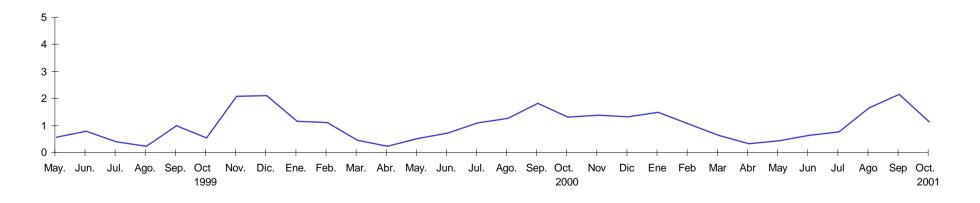


Figura 1.-2 Variación de los parámetros hidrológicos en los años indicados.

EMBALSE DE RIALB

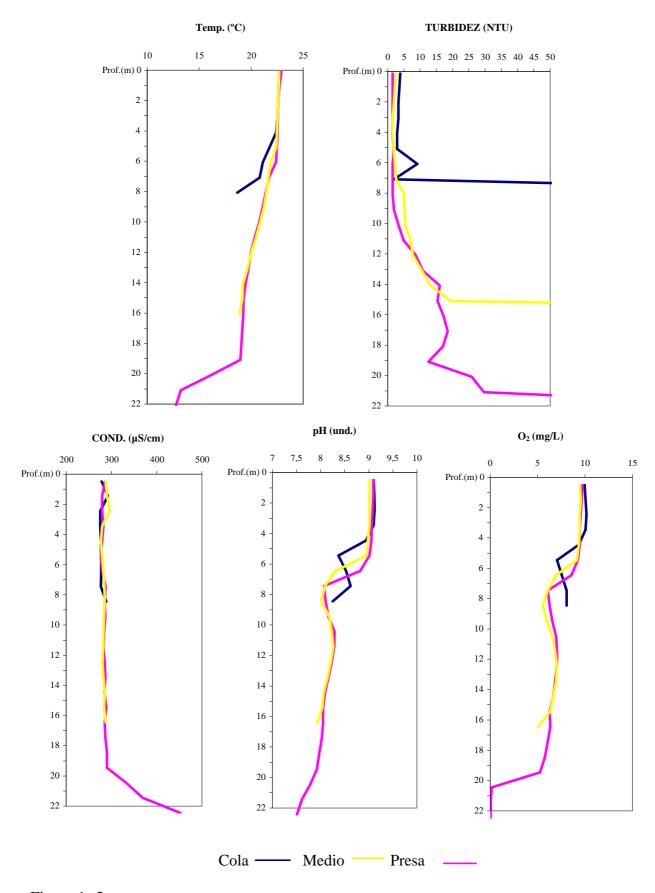


Figura 1.-3 Perfiles de temperatura, turbidez , conductividad, pH y oxígeno disuelto en el agua del embalse, el día 5 de septiembre del 2002.

Foto 1. Vista de la presa de Rialb (5-09-2002).

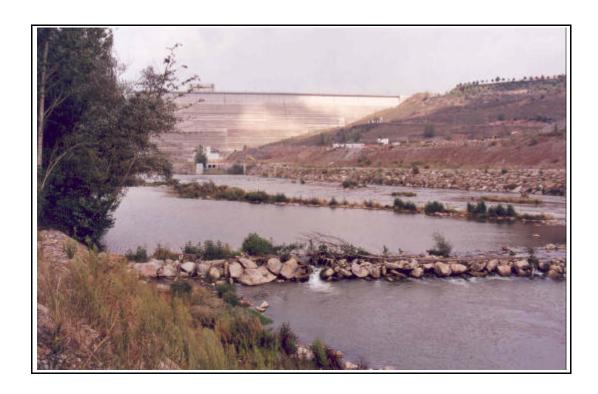


Foto 2. Río Segre inmediatamente bajo la presa de Rialb.

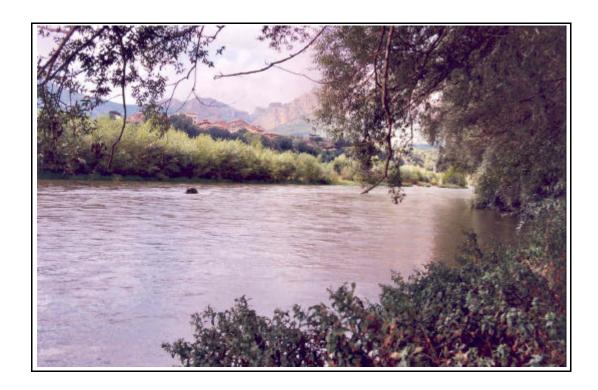


Foto 3. Río Segre aguas arriba del embalse de Rialb.

Foto 4. Sedimento extraído del embalse frente a la presa. Está algo reducido y tiene textura limosa.

ADICIONAL INFORME EMBALSE DE RIALB 2002

Durante el año 2022 se han revisado los datos del embalse de Rialb recopilados durante el año 2002, en aplicación del Real Decreto 817/2015, de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental, a partir de la trasposición de la Directiva Marco del Agua (DMA).

La metodología utilizada ha consistido en obtener del informe de dicho año los datos necesarios para estimar de nuevo el estado trófico y el potencial ecológico y, recalcular el valor correspondiente en cada variable y en el estado final del embalse, utilizando las métricas publicadas en 2015, lo que permite comparar el estado de los embalses en un ciclo interanual de forma homogénea.

En cada apartado considerado se indica la referencia del apartado del informe original al que se refiere este trabajo adicional.

1. ESTADO TRÓFICO

Para evaluar el grado de eutrofización o estado trófico de una masa de agua se aplican e interpretan una serie de indicadores de amplia aceptación. En cada caso, se ha tenido en cuenta el valor de cada indicador en función de las características limnológicas básicas de los embalses. Así, se han podido interpretar las posibles incoherencias entre los diversos índices y parámetros y establecer la catalogación trófica final en función de aquellos que, en cada caso, responden a la eutrofización de las aguas.

Dentro del presente estudio se han considerado los siguientes índices y parámetros:

a) Concentración de nutrientes. Fósforo total (PT)

La concentración de fósforo total en el epilimnion del embalse es un parámetro decisivo en la eutrofización ya que suele ser el factor limitante en el crecimiento y reproducción de las poblaciones algales o producción primaria. De entre los índices conocidos, se ha adoptado en el presente estudio, el utilizado por la Organización para la Cooperación y el Desarrollo Económico (OCDE) resumido en la tabla A1, ya que es

el que mejor refleja el grado trófico real en los casos estudiados y además es el de más amplio uso a nivel mundial y en particular en la Unión Europea (UE), España y la propia Confederación Hidrográfica del Ebro (CHE). Desde 1984 se demostró que los criterios de la OCDE, que relacionan la carga de nutrientes con las respuestas de eutrofización, eran válidos para los embalses españoles.

Tabla A1. Niveles de calidad según la concentración de fósforo total.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración PT (µg					
P/L)	0-4	4-10	10-35	35-100	>100

b) Fitoplancton (Clorofila a, densidad algal)

A diferencia del anterior, el fitoplancton es un indicador de respuesta trófica y, por lo tanto, integra todas las variables causales, de modo que está influido por otros condicionantes ambientales además de estarlo por los niveles de nutrientes. Se utilizan dos parámetros como estimadores de la biomasa algal en los índices: concentración de clorofila a en la zona fótica (µg/L) y densidad celular (nº células/ml).

Al contar en este estudio mayoritariamente con sólo una campaña de muestreo, y por tanto no contar con una serie temporal que nos permitiera la detección del máximo anual, se utilizaron las clases de calidad relativas a la media anual (tabla A2). La utilización de los límites de calidad relativos a la media anual de clorofila se basó en el hecho de que los muestreos fueron realizados durante la estación de verano. Según la bibliografía limnológica general, el verano coincidiría con un descenso de la producción primaria motivado por el agotamiento de nutrientes tras el pico de producción típico de finales de primavera. Por ello, la utilización de los límites o rangos relativos al máximo anual resultaría inadecuada.

Para la densidad celular, basamos nuestros límites de estado trófico en la escala logarítmica basada en los estudios limnológicos de Margalef, ya utilizada para incluir más clases de estado trófico en otros estudios (tabla A2). Estos resultados se ajustaban de forma más aproximada a los obtenidos mediante otras métricas estándar de la OCDE como las de P total o clorofila. En el presente estudio, los índices elegidos son los siguientes:

Tabla A2. Niveles de calidad según la clorofila a y la densidad algal del fitoplancton.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000

c) Transparencia de la columna de agua. Disco de Secchi (DS)

Por su parte, la transparencia, medida como profundidad de visibilidad del disco de Secchi (media y mínimo anual en m), está también íntimamente relacionada con la biomasa algal, aunque más indirectamente, ya que otros factores como la turbidez debida a sólidos en suspensión, o los fenómenos de dispersión de la luz que se producen en aguas carbonatadas, afectan a esta variable.

Se utilizaron las clases de calidad relativas al mínimo anual de transparencia según criterios OCDE. Se utilizaron en este caso los rangos relativos al mínimo anual (tabla A3) debido a varios factores: por un lado, la transparencia en embalses es generalmente menor que en lagos; por otro lado, en verano se producen resuspensiones de sedimentos como consecuencia de los desembalses para regadío, y por último, la mayoría de los embalses muestreados son de aguas carbonatadas, con lo que la profundidad de Secchi subestimaría también la transparencia.

Tabla A3. Niveles de calidad según la transparencia.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Disco Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7

Catalogación trófica final

Se han considerado la totalidad de los índices expuestos, que se especifican en la tabla A4, estableciéndose el estado trófico global de los embalses estudiados según la metodología descrita a continuación, utilizando el valor promedio de los dos muestreos en su caso.

Tabla A4. Resumen de los parámetros indicadores de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración PT (μg	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000

Sobre la base de esta propuesta, en la tabla A5 se incluye la catalogación de las diferentes masas de agua por parámetro. Así, para cada uno de los embalses, se asignó un valor numérico (de 1 a 5) según cada clase de estado trófico.

Tabla A5. Valor numérico asignado a cada clase de estado trófico.

ESTADO TRÓFICO	VALORACIÓN
Ultraoligotrófico	1
Oligotrófico	2
Mesotrófico	3
Eutrófico	4
Hipereutrófico	5

La valoración del estado trófico global final se calculó mediante la *media* de los valores anteriores, re-escalada a cinco rangos de estado trófico (es decir, el intervalo 1-5, de 4 unidades, dividido en 5 rangos de 0,8 unidades de amplitud).

2. ESTADO DE LA MASA DE AGUA

El **estado** de una masa de agua es el grado de alteración que presenta respecto a sus condiciones naturales, y viene determinado por el *peor valor* de su estado ecológico y químico.

- El <u>estado ecológico</u> es una expresión de la calidad de la estructura y el funcionamiento de los ecosistemas acuáticos asociados a las aguas superficiales en relación con las condiciones de referencia (es decir, en ausencia de alteraciones). En el caso de los embalses se denomina *potencial ecológico* en lugar de estado ecológico. Se determina a partir de indicadores de calidad (biológicos y fisicoquímicos).

 El <u>estado químico</u> de las aguas es una expresión de la calidad de las aguas superficiales que refleja el grado de cumplimiento de las normas de calidad ambiental de las sustancias prioritarias y otros contaminantes.

2.1. POTENCIAL ECOLÓGICO

2.1.1. INDICADORES DE CALIDAD BIOLÓGICOS: FITOPLANCTON

Como consecuencia de la aprobación de la IPH (Instrucción de Planificación Hidrológica, Orden ARM/2656/2008), se ha realizado una aproximación al <u>potencial ecológico</u> para el elemento de calidad <u>fitoplancton</u> denominada *propuesta normativa*. En ella se establecen las condiciones de máximo potencial para los siguientes parámetros: clorofila a, biovolumen, Índice de Grupos Algales (IGA) y porcentaje de cianobacterias, en función de la tipología del embalse.

Se debe seguir el procedimiento descrito en el Protocolo MFIT-2013 Versión 2 para el cálculo del RCE de cada uno de los cuatro parámetros:

- Cálculo de Ratio de Calidad Ecológico (RCE)

Cálculo para clorofila a:

RCE= [(1/Chla Observado) / (1/Chla Máximo Potencial Ecológico)]

Cálculo para biovolumen:

RCE= [(1/biovolumen Observado) / (1/ biovolumen Máximo Potencial Ecológico)]

Cálculo para el Índice de Grupos Algales (IGA):

RCE= [(400-IGA Observado) / (400- IGA Máximo Potencial Ecológico)]

Cálculo para el porcentaje de cianobacterias:

RCE= [(100 - % cianobacterias Observado) / (100 - % cianobacterias Máximo Potencial Ecológico)]

1) Concentración de clorofila a

Del conjunto de pigmentos fotosintetizadores de las microalgas de agua dulce, la clorofila a se emplea como un indicador básico de biomasa fitoplanctónica. Todos los grupos de microalgas contienen clorofila a como pigmento principal, pudiendo llegar a

representar entre el 1 y el 2 % del peso seco total. La clasificación del potencial ecológico de acuerdo con la concentración de clorofila *a* se indica en la tabla A6.

Tabla A6. Clases de potencial ecológico según el RCE de la concentración de clorofila a.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,211	0,210 - 0,14	0,13 - 0,07	< 0,07
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,433	0,432 - 0,287	0,286 - 0,143	< 0,143
Rango <i>Tipo 12</i>	> 0,195	0,194 - 0,13	0,12 - 0,065	< 0,065
Rango <i>Tipo 13</i>	> 0,304	0,303 - 0,203	0,202 - 0,101	< 0,101
Valoración de cada clase	2	3	4	5

2) Biovolumen algal

El biovolumen es una medida mucho más precisa de la biomasa algal, por tener en cuenta el tamaño o volumen celular de cada especie, además del número de células. La clasificación del potencial ecológico de acuerdo al biovolumen de fitoplancton se indica en la tabla A7.

Tabla A7. Clases de potencial ecológico según el RCE del biovolumen algal del fitoplancton.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,189	0,188 - 0,126	0,125 - 0,063	< 0,063
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,362	0,361 – 0,24	0,23 - 0,12	< 0,12
Rango <i>Tipo</i> 12	> 0,175	0,174 – 0,117	0,116 – 0,058	< 0,058
Rango <i>Tipo 13</i>	> 0,261	0,260 - 0,174	0,173 – 0,087	< 0,087
Valoración de cada clase	2	3	4	5

3) Índice de grupos algales (IGA)

Se ha aplicado un índice basado en el biovolumen relativo de diferentes grupos algales del fitoplancton, denominado *IGA*, y que viene siendo utilizado por CHE desde 2010.

El índice IGA se expresa:

$$Iga = \frac{1 + 0.1*Cr + Cc + 2*(Dc + Chc) + 3*Vc + 4*Cia}{1 + 2*(D + Chc) + Chnc + Dnc}$$

Siendo,

Cr	Criptófitos	Cia	Cianobacterias
Cc	Crisófitos coloniales	D	Dinoflageladas
Dc	Diatomeas coloniales	Cnc	Crisófitos no coloniales
Chc	Clorococales coloniales	Chnc	Clorococales no coloniales
Vc	Volvocales coloniales	Dnc	Diatomeas no coloniales

En cuanto al *IGA*, se han considerado los rangos de calidad establecidos en la tabla A8.

Tabla A8. Clases de potencial ecológico según el RCE del Índice de Grupos Algales (IGA).

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,974	0,973 - 0,649	0,648 - 0,325	< 0,325
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,982	0,981 - 0,655	0,654 - 0,327	< 0,327
Rango Tipo 12	> 0,929	0,928 - 0,619	0,618 – 0,31	< 0,31
Rango Tipo 13	> 0,979	0,978 - 0,653	0,652 - 0,326	< 0,326
Valoración de cada clase	2	3	4	5

4) Porcentaje de cianobacterias

El aumento de la densidad relativa de cianobacterias se ha relacionado en numerosas ocasiones con procesos de eutrofización.

Para el cálculo del porcentaje de cianobacterias se ha utilizado el procedimiento descrito en el Protocolo de análisis y cálculo de métricas de fitoplancton en lagos y embalses Versión 2 (MAGRAMA, 2016). Se aplica para el cálculo la siguiente fórmula:

$$\%CIANO = \frac{\text{BVOLcia} - \left[\text{BVOLchr} - \left(\text{BVOLmic} + \text{BVOLwor}\right)\right]}{BVOLtot}$$

Donde: BVOL_{CIA} Biovolumen de cianobacterias totales

BVOL_{CHR} Biovolumen de Chroococcales

BVOL_{MIC} Biovolumen de *Microcystis*

BVOLWOR Biovolumen de Woronichinia

BVOL_{TOT} Biovolumen total de fitoplancton

Los valores de cambio de clases se establecen como se muestran en la tabla A9.

Tabla A9. Clases de potencial ecológico según el RCE del porcentaje de cianobacterias.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,908	0,907 - 0,607	0,606 - 0,303	< 0,303
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,715	0,714 - 0,48	0,47 - 0,24	< 0,24
Rango Tipo 12	> 0,686	0,685 - 0,457	0,456 - 0,229	< 0,229
Rango <i>Tipo 13</i>	> 0,931	0,930 - 0,621	0,620 - 0,31	< 0,31
Valoración de cada clase	2	3	4	5

Posteriormente, es necesario llevar a cabo la *transformación de los valores de RCE* obtenidos a una escala numérica equivalente para los cuatro indicadores (RCEtrans). Las ecuaciones varían en función del tipo de embalse.

Tipos 1, 2 y 3

Clorofila a				
RCE>0,21	RCE _{trans} = 0,5063 x RCE + 0,4937			
RCE ≤0,21	RCE _{trans} = 2,8571 x RCE			
	•			

Biovolumen				
RCE >0,19	RCE _{trans} = 0,4938 x RCE + 0,5062			
RCE ≤0,19	RCE _{trans} = 3,1579 x RCE			

% Cianobacterias				
RCE >0,91	RCE _{trans} = 4,4444 x RCE - 3,4444			
RCE ≤0,91	RCE _{trans} = 0,6593 x RCE			

Índice de Grupos Algales (IGA)	
RCE >0,9737	RCE _{trans} = 15,234 x RCE - 14,233
RCE ≤0,9737	RCE _{trans} = 0,6162 x RCE

Tipos 7, 8, 9, 10 y 11

Clorofila a	
RCE>0,43	RCE _{trans} = 0,7018 x RCE + 0,2982
RCE ≤0,43	RCE _{trans} = 1,3953 x RCE

Biovolumen	
RCE >0,36	RCE _{trans} = 0,625 x RCE + 0,375
RCE ≤0,36	RCE _{trans} = 1,6667 x RCE

% Cianobacterias	
RCE >0,72	RCE _{trans} = 1,4286 x RCE - 0,4286
RCE ≤0,72	RCE _{trans} = 0,8333 x RCE

Índice de Grupos Algales (IGA)	
RCE >0,9822	RCE _{trans} = 22,533 x RCE - 21,533
RCE ≤0,9822	RCE _{trans} = 0,6108 x RCE

Tipos 6 y 12

Clorofila a	
RCE >0,195	RCE _{trans} =0,497x RCE + 0,503
RCE ≤ 0,195	RCE _{trans} = 3,075 x RCE

Biovolumen	
RCE > 0,175	RCE _{trans} = 0,4851 x RCE + 0,5149
RCE ≤ 0,175	RCE _{trans} = 3,419 x RCE

% Cianobacterias	
RCE > 0,686	RCE _{trans} = 1,2726x - 0,2726
RCE ≤ 0,686	RCE _{trans} = 0,875 x RCE

Índice de Grupos Algales (IGA)	
RCE > 0,929	$RCE_{trans} = 5,6325x - 4,6325$
RCE ≤ 0,929	RCE _{trans} = 0,6459 x RCE

Tipo 13

Clorofila a	
RCE > 0,304	RCE _{trans} = 0,575 x RCE + 0,425
RCE ≤ 0,304	RCE _{trans} = 1,9714 x RCE

Biovolumen	
RCE > 0,261	RCE _{trans} = 0,541x RCE + 0,459
RCE ≤ 0,261	RCE _{trans} = 2,3023 x RCE

% Cianobacterias	
RCE > 0,931 RCE _{trans} = 5,7971 x RCE - 4,7971	
RCE ≤ 0,931	RCE _{trans} = 0,6445 x RCE

Índice de Grupos Algales (IGA)			
RCE > 0,979	RCE _{trans} = 18,995 x RCE - 17,995		
RCE ≤ 0,979	RCE _{trans} = 0,6129 x RCE		

Para la combinación de los distintos indicadores representativos del elemento de calidad fitoplancton se hallará la *media* de los RCE transformados correspondientes a los parámetros "abundancia-biomasa" y "composición". La combinación de los RCE transformados se llevará a cabo primero para los indicadores de clorofila y biovolumen, ambos representativos de la <u>abundancia</u>. La combinación se hará mediante las *medias* de los RCE transformados.

Posteriormente se llevará a cabo la combinación de los indicadores representativos de la <u>composición</u>: porcentaje de cianobacterias y el IGA. La combinación se hará mediante las *medias* de los RCE transformados. Finalmente, para la combinación de los indicadores de composición y abundancia-biomasa se hará la *media aritmética*.

El valor final de la combinación de los RCE transformados se clasificará de acuerdo a la siguiente escala de la tabla A10:

Tabla A10. Ratios de calidad según el índice de potencial ecológico normativo RCEtrans.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
RCEtrans	> 0,6	0,4-0,6	0,2-0,4	<0,2
Valoración de cada clase	2	3	4	5

Tabla A11. Valores de referencia propios del tipo (VR_t) y límites de cambio de clase de potencial ecológico (B⁺/M, Bueno o superior-Moderado; M/D, Moderado-Deficiente; D/M, Deficiente-Malo) de los indicadores de los elementos de calidad de embalses (*RD 817/2015*). Se han incluido sólo los tipos de embalses presentes en el ESTUDIO.

Tipo	Elemento	Parámetro	Indicador	VRt	B ⁺ /M (RCE)	M/D (RCE)	D/M (RCE)
		Diamasa	Clorofila a mg/m ³	2,00	0,211	0,14	0,07
		Biomasa	Biovolumen mm ³ /L	0,36	0,189	0,126	0,063
Tipo 1	Fitoplancton		Índice de Catalán (IGA)	0,10	0,974	0,649	0,325
		Composición	Porcentaje de cianobacterias	0,00	0,908	0,607	0,303
		5.	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 7	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Diamaga	Clorofila a mg/m³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 9	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Diaman	Clorofila a mg/m³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 10	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Piomoco	Clorofila a mg/m³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 11	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m ³	2,40	0,195	0,13	0,065
		Biomasa	Biovolumen mm ³ /L	0,63	0,175	0,117	0,058
Tipo 12	Fitoplancton		Índice de Catalán (IGA)	1,50	0,929	0,619	0,31
		Composición	Porcentaje de cianobacterias	0,10	0,686	0,457	0,229
		Diamaga	Clorofila a mg/m³	2,10	0,304	0,203	0,101
		Biomasa	Biovolumen mm ³ /L	0,43	0,261	0,174	0,087
Tipo 13	Fitoplancton		Índice de Catalán (IGA)	1,10	0,979	0,653	0,326
		Composición	Porcentaje de cianobacterias	0,00	0,931	0,621	0,31

2.1.2. INDICADORES DE CALIDAD FISICOQUÍMICOS

Todavía la normativa no ha desarrollado qué indicadores fisicoquímicos se emplean en embalses, pero por similitud con los que se recogen para lagos (Real Decreto 817/2015) se utilizan los siguientes:

1) Transparencia

La transparencia es un elemento válido para evaluar el grado trófico del embalse; tiene alta relación con la productividad biológica; y además tiene rangos establecidos fiables y de utilidad para el establecimiento de los límites de clase del potencial ecológico. Se ha evaluado a través de la profundidad de visión del disco de Secchi (DS), considerando su valor para la obtención de las distintas clases de potencial (tabla A12).

Tabla A12. Clases de potencial ecológico según la profundidad de visión del Disco de Secchi.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Disco de Secchi (DS, m)	> 6	6 - 3	< 3
Valoración de cada clase	1	2	3

2) Condiciones de oxigenación

Representa un parámetro secundario de la respuesta trófica que viene a indicar la capacidad del sistema para asimilar la materia orgánica autóctona, generada por el propio sistema a través de los productores primarios en la capa fótica, y la materia orgánica alóctona, es decir, aquella que procede de fuentes externas al sistema, como la procedente de focos de contaminación puntuales o difusos.

Se ha evaluado estimando la reserva media de oxígeno hipolimnético en el periodo de muestreo, correspondiente al periodo de estratificación. En el caso de embalses no estratificados se consideró la media de oxígeno en toda la columna de agua. Las clases consideradas han sido las correspondientes a la concentración de oxígeno en la columna de agua; parámetro vital para la vida piscícola. En la tabla A13 se resumen los límites establecidos.

Tabla A13. Clases de potencial ecológico según la concentración de oxígeno disuelto en el hipolimnion o en toda la columna de agua, cuando el embalse no está estratificado.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Concentración hipolimnética (mg/L O ₂)	> 8	8 - 6	< 6
Valoración de cada clase	1	2	3

3) Concentración de nutrientes

En este caso se ha seleccionado el fósforo total (PT), ya que su presencia a determinadas concentraciones en un embalse acarrea procesos de eutrofización, pues en la mayoría de los casos es el principal elemento limitante para el crecimiento de las algas.

Se ha empleado el resultado obtenido en la muestra integrada, considerando los criterios de la OCDE especificados en la tabla A14 (OCDE, 1982) adaptado a los intervalos de calidad del RD 817/2015.

Tabla A14. Clases de potencial ecológico según la concentración de fósforo total.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Concentración de PT (µg P/L)	0 - 4	4 -10	> 10
Valoración de cada clase	1	2	3

Si se toman varios datos anuales, se hace la *mediana* de los valores anuales.

Posteriormente se elige el *peor valor* de los tres indicadores (transparencia, condiciones de oxigenación y fósforo total).

4) Sustancias preferentes y contaminantes específicos de cuenca

Dentro de los indicadores fisicoquímicos también se tienen en cuenta las **sustancias preferentes y contaminantes específicos de cuenca.** El valor medio de los datos anuales se revisa para ver si *cumple* o no con la Norma de Calidad Ambiental (NCA) del Anexo V del RD 817/2015. Si incumple supone asignarle para los indicadores fisicoquímicos la categoría de moderado.

Tabla A15. Clases de potencial ecológico para sustancias preferentes y contaminantes específicos de cuenca.

Clase de potencial ecológico	Muy Bueno	Moderado
Sustancias preferentes y contaminantes específicos de cuenca	Cumple NCA	No cumple NCA
Valoración de cada clase	2	3

El <u>potencial ecológico</u> resulta del *peor valor* entre los indicadores biológicos y fisicoquímicos.

Tabla A16. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico
Bueno o superior	Muy bueno	Bueno o superior
Bueno o superior	Bueno	Bueno o superior
Bueno o superior	Moderado	Moderado
Moderado		Moderado
Deficiente	Indistinto	Deficiente
Malo		Malo

2.2. ESTADO QUÍMICO

El <u>estado químico</u> es "*no bueno*" cuando hay algún incumplimiento de la Norma de Calidad Ambiental, bien sea como media anual (NCA_MA), como máximo admisible (NCA_CMA) o en la biota (NCA_biota) para las **sustancias prioritarias y otros contaminantes**. Las NCA se recogen en el *Anexo IV del RD 817/2015*.

Tabla A17. Clases de estado químico para sustancias prioritarias y otros contaminantes.

Clase de estado químico	Bueno	No alcanza el buen estado
Sustancias prioritarias y otros contaminantes	Cumple NCA	No cumple NCA
Valoración de cada clase	2	3

2.3. ESTADO

El <u>estado</u> de la masa de agua es el *peor valor* entre su potencial ecológico y su estado químico.

Tabla A18. Determinación del estado.

Estado	Estado Químico		
Potencial Ecológico	Bueno	No alcanza el buen estado	
Bueno o superior	Bueno		
Moderado		Inferior a bueno	
Deficiente	Inferior a bueno		
Malo			

DIAGNÓSTICO DEL ESTADO TRÓFICO DEL EMBALSE DE RIALB

Se han considerado los indicadores especificados en la tabla A19 para los valores medidos en el embalse, estableciéndose el estado trófico global del embalse según la metodología descrita.

Tabla A19. Parámetros indicadores y rangos de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (μg P /L)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000
VALOR PROMEDIO	< 1,8	1,8 – 2,6	2,6 - 3,4	3,4 - 4,2	> 4,2

En la tabla A20 se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final para cada campaña de muestreo.

Tabla A20. Diagnóstico del estado trófico del embalse de Rialb.

INDICADOR	VALOR	ESTADO TRÓFICO
CONCENTRACIÓN P TOTAL	21,00	Mesotrófico
DISCO SECCHI	2,40	Mesotrófico
CLOROFILA a	10,20	Eutrófico
DENSIDAD ALGAL	7598	Mesotrófico
ESTADO TRÓFICO FINAL	3,25	MESOTRÓFICO

Atendiendo a los criterios seleccionados, la concentración de P total ha clasificado el embalse como mesotrófico; la transparencia como mesotrófico; la concentración de clorofila *a* como eutrófico y la densidad algal como mesotrófico. Combinando todos los indicadores, el estado trófico final para el embalse de Rialb ha resultado ser **MESOTRÓFICO**.

DIAGNÓSTICO DEL ESTADO FINAL DEL EMBALSE DE RIALB

En la mayoría de los casos en lugar del estado de la masa, sólo se puede establecer el potencial ecológico (además sin tener en cuenta la presencia de sustancias preferentes y contaminantes específicos de cuenca, para los indicadores fisicoquímicos). Tampoco se han estudiado las sustancias prioritarias y otros contaminantes que permitan determinar el estado químico, por eso se diagnostica la masa con el **potencial ecológico**.

Se han considerado los indicadores, los valores de referencia y los límites de clase B+/M (Bueno o superior/Moderado), M/D (Moderado/Deficiente) y D/M (Deficiente/Malo), así como sus ratios de calidad ecológica (RCE), especificados en las tablas A21 y A22.

Tabla A21. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.

			RANGOS DEL RCE				
Indicador	Elementos	Parámetros	Bueno o superior		Moderado	Deficiente	Malo
Biológico	Fitoplancton	Clorofila <i>a</i> (μg/L)	≥ 0,433		0,432 – 0,287	0,286 – 0,143	< 0,143
		Biovolumen algal (mm³/L)	≥ 0,362		0,361 – 0,24	0,23 – 0,12	< 0,12
		Índice de Catalán (IGA)	≥ 0,982		0,981 – 0,655	0,654 – 0,327	< 0,327
		Porcentaje de cianobacterias	≥ 0,715		0,714 - 0,48	0,47 - 0,24	< 0,24
			Bueno o superior		Moderado	Deficiente	Malo
INDICADOR BIOLÓGICO			> 0,6		0,4 - 0,6	0,2 - 0,4	< 0,2
			RANGOS DE VALORES				I
Indicador	Elementos	Parámetros	Muy bueno	Bueno	Moderado	Deficiente	Malo
Fisicoquímico	Transparencia	Disco de Secchi (m)	> 6	3 - 6	1,5 - 3	0,7 - 1,5	< 0,7
	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	> 8	8 - 6	6 - 4	4 - 2	< 2
	Nutrientes	Concentración de PT (µg P/L)	0 - 4	4 - 10	10 - 35	35 - 100	> 100
			Muy bueno	Bueno	Moderado		
INDICADOR FISICOQUÍMICO			< 1,6	1,6 – 2,4	> 2,4		

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico normativo sigue el esquema de decisiones indicado en la tabla A22.

Tabla A22. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico (PE)		
Bueno o superior	Muy bueno	Bueno o superior		
Bueno o superior	Bueno	Bueno o superior		
Bueno o superior	Moderado	Moderado		
Moderado		Moderado		
Deficiente	Indistinto	Deficiente		
Malo		Malo		

En la tabla A23 se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico, tras pasar el filtro del indicador fisicoquímico.

Tabla A23. Diagnóstico del potencial ecológico del embalse de Rialb.

Indicador	Elemento	s Parámetro	Indicador	Valor	RCE	RCET	PE		
Biológico	Fitoplancto	n Biomasa	Clorofila a (µg/L)	10,20	0,25	0,36	Moderado		
INDICADOR BIOLÓGICO					3	MODERADO			
Indicador		Elementos	Indicador	Valor		PE			
Fisicoquímico		Transparencia	Disco de Secchi (m)	2,40		Moderado			
		Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	9,50			Muy Bueno		
		Nutrientes	Concentración de PT (µg P/L)	21,00			Moderado		
INDICADOR FISICOQUÍMICO					3		MODERADO		
POTENCIAL ECOLÓGICO					MODERADO				
ESTADO FINAL					INFERIOR A BUENO				

De acuerdo con los resultados obtenidos, el Estado Final del embalse de Rialb para el año 2002 es de nivel 3, **INFERIOR A BUENO**.