

ASISTENCIA TÉCNICA PARA LA ACTUALIZACIÓN LIMNOLÓGICA DE EMBALSES

EMBALSE DE EL VAL

2001

INDICE Pág

CONCLUSIONES

RECOMENDACIONES

1	I	NTRO	DUCCIÓN	5
2	C	CARAC	CTERÍSTICAS DEL EMBALSE	6
3	N	1ÉTOI	DOS	8
	3.1	PUNT	OS DE MUESTREO	8
	3.2	PROC	CEDIMIENTOS DE MUESTREO Y ANÁLISIS <i>IN SITU</i>	9
	3.3	Pará	METROS Y MÉTODOS ANALÍTICOS	10
4	R	RESUL	TADOS	12
	4.1	PAR	ÁMETROS FÍSICO-QUÍMICOS DEL AGUA	12
	4.	.1.1	Temperatura	12
	4.	.1.2	Transparencia del agua	13
	4.	.1.3	Mineralización del agua y pH	14
	4.	.1.4		
	4	.1.5		
		.1.6		
	4.2			
	4.3			
		.3.1		
	4.	.3.2	Zoobentos	19
5	E	STAD	TOS DE MUESTREO	
	5.1			
	5.2	RIESO	GOS AMBIENTALES	
	5.	.2.1	Situación actual	21
	.5	2.2	Situaciones futuras	22

Apéndice 1. Tablas

Apéndice 2. Figuras

Apéndice 3. Fotos

CONCLUSIONES

El análisis de las características limnológicas del embalse de Val, en su fase inicial de llenado, permite concluir lo siguiente:

- En la situación actual el embalse es eutrófico lo que está influido por:
 - ➤ las aportaciones de nutrientes moderado-altas del río Val que cuenta con vertidos de importancia en su cuenca (especialmente de origen industrial en Ágreda);
 - ➤ la baja renovación del agua en el embalse, lo que favorece la proliferación del fitoplancton.
- Existe riesgo importante de desoxigenación del hipolimnion y de vertido de aguas anóxicas. Esto se ha producido este verano en el canal de riego y dio problemas de malos olores (oxidación de SH₂) apreciables en Los Fallos, por la proximidad de las viviendas con el tramo inicial del canal. No hubo riesgo de afecciones en el río, puesto que el agua que circula por éste proviene directamente del río Queiles.
- La calidad del agua del río Queiles es superior a la del río Val (aguas menos mineralizadas y con menos nutrientes). El trasvase de agua de este río contribuirá a limitar el grado trófico del embalse, al disminuir la carga de fósforo.

RECOMENDACIONES

El diagnóstico realizado ha permitido conocer la situación trófica del embalse en un periodo muy inicial de su llenado. La puesta en marcha del trasvase del río Queiles modificará presumiblemente el estado trófico del embalse, pero el riesgo de desoxigenación del hipolimnion persistirá, especialmente mientras el embalse presente niveles de llenado bajos.

Se recomienda lo siguiente:

- Seguimiento limnológico del embalse con muestreos en primavera, verano y otoño del 2002.
- Análisis de las cargas de nutrientes que alcanzan el embalse y definición de las medidas de corrección necesarias para su reducción.
- Vigilancia de la calidad de las aguas vertidas en verano, especialmente si se vierte en el río. Mantener un caudal en el río procedente del río Queiles si no asegura la calidad del agua que procede del embalse.
- Estudio de caudal ecológico en el río Queiles aguas abajo de la presa.

1 INTRODUCCIÓN

El embalse de Val se empezó a llenar en septiembre de 2000, y en la actualidad se encuentra en su primera fase de funcionamiento. En el año 2001 se ha realizado, a petición del Área de Calidad de Aguas de la Confederación Hidrográfica del Ebro, un diagnóstico limnológico del embalse a partir de la realización de dos campañas de muestreo, en marzo y septiembre.

Los objetivos del diagnóstico son:

- la caracterización hidroquímica de las aguas del embalse, tributarios y emisario.
- la determinación del estado trófico del embalse y el análisis de futuras tendencias.
- la identificación de riesgos derivados del estado trófico que puedan causar pérdida de calidad del agua para el abastecimiento o para las comunidades biológicas del embalse y del río aguas abajo.

En la memoria se presentan la metodología, los resultados de los muestreos y análisis efectuados, y las conclusiones y recomendaciones del estudio.

2 CARACTERÍSTICAS DEL EMBALSE

El embalse de Val permitirá la regulación de los ríos Queiles y Val, y tiene como usos principales los riegos y el abastecimiento de Los Fayos, Tarazona, Novallas y las Mancomunidades de Aguas del Moncayo y de Cascante, Cintruénigo y Fitero.

La presa está situada al final del valle fluvial del Val, inmediatamente aguas arriba del municipio de Los Fallos. Además de las aportaciones del Val, el embalse recibirá agua del río Queiles por el túnel de trasvase construido en la margen derecha (éste aportará el mayor caudal) (figura 2.-1).

El volumen máximo de embalse es de 24 hm³ (cota 620 m s.n.m.) y la profundidad máxima de 66 m. La presa cuenta con los siguientes órganos de maniobra:

- Aliviadero de labio fijo (cota 620 m s.n.m.) centrado en el cuerpo de la presa.
- Desagüe de fondo con dos bocas en posición central (cota 570,77 m s.n.m.). La capacidad de desagüe es de 53 m³/s y las compuertas son tipo Bureau.
- Toma de riegos en la margen izquierda de la presa (cota 572). Tiene una capacidad de 7,96 m³/s y válvulas de chorro hueco.

El canal de trasvase se inicia en la margen izquierda del río Queiles, desde un azud de derivación de 13 m de altura. La longitud total del trasvase es de 968,6 m de los que 725 m son por túnel. La capacidad del canal de trasvase es de 60 m³/s.

En la operación normal del embalse, el agua se verterá por la toma de riegos que conecta con la acequia de Magallón Fiel. Esta acequia se une con la acequia de Magallón Grande aguas abajo de la presa (ésta aporta aguas directamente del río Queiles). Esto permitirá que, ocasionalmente, se pueda abastecer a la acequia con sólo agua del río Queiles o con una mezcla de aguas del embalse y del Queiles.

Durante la etapa inicial de llenado, el embalse ha recibido sólo las aportaciones del río Val y se ha mantenido alrededor de las cotas 582 (septiembre) y 584 (marzo), mientras se realizaban estudios de asentamiento de la presa. Esto supone un volumen embalsado inferior a 4 hm³. En el muestreo de marzo, el agua vertida se derivaba por la acequia de riegos, y se unía con agua del

río Queiles inmediatamente bajo la presa. En septiembre las aguas vertidas por la acequia no se mezclaban con las del río Queiles; esto es porque las aguas de este río (de mejor calidad que las del Val) se vertían directamente en el río para el abastecimiento de la Mancomunidad de Aguas del Moncayo.

3 MÉTODOS

El estudio se ha basado en la metodología limnológica, la cual tiene en cuenta una serie de parámetros fisicoquímicos y biológicos de la masa de agua, sus relaciones y sinergias. Se ha analizado la heterogeneidad vertical (perfiles) y horizontal (dos puntos de muestreo a lo largo del embalse), así como las características de las aguas aportadas al embalse (del río Val en la actualidad, y de este río y del Queiles en un futuro) y las que salen (acequia de riego).

3.1 PUNTOS DE MUESTREO

La toma de muestras se realizó en los siguientes puntos, los cuales se georreferenciaron con un GPS:

Zonas	Punto de muestreo	Coordenadas UTM	Localización
Embalse	V-1S Superficie V-1F Fondo (14 m)	0600547 - 4636760	A unos 50 m del muro de la presa
Tributarios - Río Val - Río Queiles	V-2 V-3	0599384 - 4637034 0599384 - 4637034	A 1,2 km de la presa aguas arriba. Aguas abajo del azud del trasvase
Salida del embalse ¹	V-4	-	En la acequia de riegos bajo la presa.

En el apéndice 3 se recogen algunas fotografías del embalse y de los puntos de muestreo.

¹ En el muestreo de marzo la muestra de salida se tomó de la mezcla del agua del embalse con la del río Queiles. En septiembre estas aguas no se mezclaban y la muestra corresponde a agua del embalse.

3.2 PROCEDIMIENTOS DE MUESTREO Y ANÁLISIS IN SITU

El plan de muestreo y la toma de muestras se resume en el siguiente cuadro:

	Embalse	Río Val	Río Queiles	Acequia
Medidas sonda	√ ¹	1	✓	✓
Análisis in situ (NH ₄ , SH ₂)	√ ²	1	✓	✓
Hidroquímica	✓ ²	√	✓	✓
Clorofila	1	1	-	-
Fitoplancton	1	-	-	-
Zoobentos	√ ³	-	-	-

^{(1):} Perfiles metro a metro en dos estaciones a lo largo del eje principal del embalse (presa y medio-cola)

En cada punto de muestreo se realizan:

- Perfiles metro a metro de temperatura, conductividad, pH, turbidez y oxígeno disuelto con una sonda multiparamétrica TURO T611 en el embalse, (o medidas puntuales en los ríos). Los registros de la temperatura se contrastan con las medidas tomadas con termómetro de mercurio, en la superficie y en el fondo. También se verifican los resultados de la sonda para el oxígeno disuelto mediante la toma de muestras de agua y su análisis por el método Winkler.
- Medidas de la profundidad del Disco de Secchi y determinación de la profundidad de compensación de la luz (2,7* DS).
- Determinación in situ de la concentración de amonio y sulfhídrico con Kits AQUAQUANT de la casa Merk.
- Toma de muestras de agua (superficie y fondo en el embalse) para los análisis químicos. Las muestras de fondo se toman con una botella oceanográfica tipo Niskens. Las muestras se recogen en envases adecuados (polietileno para la mayor parte de los análisis y botella de DBO para el análisis de Winkler) y se estabilizan de acuerdo con los métodos de análisis a

^{(2):} Muestras de superficie y fondo.

^{(3):} Muestra extraída con draga.

realizar. Posteriormente se etiquetan adecuadamente y se guardan en nevera con hielo durante su traslado hasta el laboratorio.

- Las muestras de fitoplancton se toman con red de arrastre de 37 μm de poro en la zona cercana a la presa, y de agua de la superficie para el recuento.
- La muestra del zoobentos se obtiene a partir de la extracción de sedimento con una draga Ekman o Van Veen, preferentemente en la zona más profunda del embalse; el sedimento se filtra en una red de 250 μm de poro y la muestra resultante se conserva con formol.

3.3 PARÁMETROS Y MÉTODOS ANALÍTICOS

Los parámetros analizados y los procedimientos analíticos son los siguientes:

Parámetros Hidroquímicos	Método
Temperatura	Sonda multiparamétrica Turo y termómetro de mercurio
Conductividad	Sonda multiparamétrica Turo
pН	Sonda multiparamétrica Turo
Turbidez	Sonda multiparamétrica Turo
Sólidos en suspensión	Gravimetría
Alcalinidad	Acidometría
Calcio	Complexometría
Nitrito	Colorimetría. Método de Shinn
Nitrato	Colorimetría. Reducción a NO ₂ en columna de intercambio
Amonio	Colorimetría. Reacción de Nessler
Fósforo total	Colorimetría. Ácido ascórbico tras digestión
Fosfato disuelto (P-PO ₄ ⁼)	Colorimetría. Ácido ascórbico
Oxígeno disuelto	Sonda multiparamétrica Turo y método Winkler
Hierro total	Absorción atómica de llama
Manganeso total	Absorción atómica de llama

Parámetros Sedimento	Método
Carbono total	Anális is elemental
Carbono orgánico	Pérdida por ignición
Nitrógeno total	Análisis elemental
Fósforo total	Fluorescencia de rayos X

Parámetros biológicos	Método
Clorofila a	Naquadat 06716
Fitoplancton	Identificación de las especies más abundantes en muestras de red y recuentos en el microscopio invertido.
Zoobentos	Identificación y recuentos de especies en muestras de sedimento extraído con draga y filtrado con una red de 250μ de poro.

CHE EMBALSES/ VAL Febrero, 2002

RESULTADOS

Los resultados físico-químicos del agua y del sedimento, y biológicos de los muestreos de marzo y septiembre de 2001 se presentan en las tablas 4.-1 a 4.-4 y en las figuras 4.-1 y 4.-2. En el capítulo se describen las características de los tributarios del embalse, el actual (río Val) y el futuro (río Queiles).

4.1 PARÁMETROS FÍSICO-QUÍMICOS DEL AGUA

4.1.1 Temperatura

Embalse

El embalse se encuentra ligeramente estratificado en marzo; la diferencia de temperatura entre la superficie y el fondo es de 3 °C y se aprecia una termoclina poco marcada entre 11 y 14 m (figura 4.-1). En septiembre, los perfiles efectuados muestran la existencia de una estructura térmica diferente entre la presa y la ataguía (situada a unos 400 m del muro de la presa) y en el resto del embalse (figura 4.-2). En el compartimento cercano a la presa, el perfil es prácticamente homogéneo hasta los 12 m y existe una termoclina profunda desde esta profundidad hasta el fondo (a unos 15 m). En el resto del embalse (aguas arriba de la ataguía), existe una termoclina más superficial entre 3 y 7 m (el fondo se encuentra a 9 m). Esta diferencia se atribuye a que en el compartimento cercano a la presa el vertido de agua de fondo (por la toma de riegos) ha favorecido el hundimiento de la termoclina a lo largo del verano (en este muestreo esta termoclina ya se sitúa por debajo de la toma de riegos).

T (° C)	Marzo	Septiembre	
		Presa-Ataguía Ag.arriba Atag	
Superf.	11,4	18,6	18,5
Fondo	8,3	11,7	12,9

Tributarios y emisario

Las aguas de los tributarios (ríos Val y Queiles) y de los vertidos del embalse (canal de riego) presentan las siguientes temperaturas:

T (° C)	Marzo	Septiembre	
Río Val	12,6	11,5	
R. Queiles	12,4	14,0	
Canal riego	12,0	18,5	

En marzo la temperatura del agua es más uniforme, alrededor de 12 °C, mientras que en septiembre existe una mayor variación en los puntos de muestreo. El río Queiles presenta una mayor temperatura del agua que se atribuye al estancamiento del agua del río, en el azud del trasvase.

Las aguas vertidas presentan una temperatura acorde con las del embalse en el nivel de la toma de riegos; en septiembre este nivel se encuentra por encima de la termoclina. En marzo, la medida de la temperatura en el canal de riego corresponde a la mezcla del agua vertida desde la presa con la del río Queiles.

4.1.2 Transparencia del agua

Embalse

La transparencia del agua es elevada en la presa. Los valores de la profundidad del Disco de Secchi y las concentraciones de sólidos en suspensión y de clorofila son las siguientes:

	Marzo	Septiembre	
		Presa-Ataguía	Ag.arriba Ataguía
Prof. Disco Secchi (m)	5	5,6 - 6,1	3,6 - 4,6
Sólidos suspensión (mg/L)	1,6	1,6	
Clorofila (mg/m³)	5,35	10,7	

La concentración de la clorofila (5-10 mg/m³) es elevada para los valores correspondientes del Disco de Secchi y de los sólidos en suspensión, lo que se atribuye a las características del fitoplancton (ver apartado 4.2).

En septiembre, la transparencia del agua en la cola del embalse es más baja (3,6 m de DS) y es debido a que el río Val aporta aguas turbias (52 NTU), con una concentración de sólidos en suspensión elevada (49 mg/L) (tabla 4.-2). Sin embargo esta turbidez inorgánica decrece hacia la presa al producirse la sedimentación de la carga sólida a lo largo del embalse. El río Queiles presenta aguas transparentes y con una concentración baja de sólidos en suspensión (3,1 mg/L en septiembre).

4.1.3 Mineralización del agua y pH

Se han analizado la conductividad, alcalinidad y concentración de calcio como indicadores de la mineralización del agua. Los resultados se presentan en las tablas 4.-1 y 4.-2.

Embalse

Las aguas presentan una mineralización elevada (conductividad entre 700 y 800 μ S/cm), están bien tamponadas (alcalinidad de 3 - 4 meq/L) y son ricas en calcio (>100 mg/L), lo cual limita la eutrofia.

	Marzo	Septiembre
Cond. (µS/cm)	820 - 832	704 - 783
Alcalinidad (meq/L)	4,1 - 4,2	2,9 -3,4
Calcio (mg/L)	126 - 128	102 - 126
pH (unid.)	8,4 - 8,7	7,5 - 7,7

El perfil de la conductividad es uniforme en marzo y presenta picnoclinas en septiembre, asociadas a la termoclina profunda en el compartimento cercano a la presa, y a la termoclina superficial en la zona del embalse aguas arriba de la ataguía (en este área la conductividad aumenta bajo la termoclina hasta 900 µS/cm).

El pH está relacionado con la mineralización del agua y con la producción primaria. En marzo los valores son superiores a 8, y en septiembre son del orden de 7,5 a 7,7.

Tributarios y emisario

Las aguas de los ríos Val y Queiles presentan las siguientes características de mineralización y pH:

		Marzo			Septiembre	
	Val	Queiles	Canal	Val	Queiles	Canal
Cond. (µS/cm)	834	395	505	802	532	716
Alcalinidad (meq/L)	4,4	2,5	2,9	4,6	3,4	
Calcio (mg/L)	134	70	88	146	100	
pH (unid.)	8,23	8,32	8,31	7,68	8,08	7,77

- El río Val aporta aguas de mineralización elevada (conductividad >800 μS/cm, alcalinidad >4 meq/L y calcio > 100 mg/L), lo que responde a la naturaleza calcárea de la cuenca.
- El río Queiles presenta aguas de mineralización moderada (conductividad de 400-500 μS/cm, alcalinidad de 2,5 -3 meq/L y calcio de 88 100) que proceden del área del Moncayo, cuyos materiales son poco solubles. La mineralización aumenta en septiembre, lo que se atribuye a la disminución del caudal (concentración de los iones disueltos).
- La mineralización de las aguas vertidas en el canal de riego depende de si hay mezcla o no con el agua del río Queiles. En septiembre las aguas del canal proceden del embalse y tienen una mineralización acorde con la del agua cercana a la presa.

4.1.4 Nutrientes

Embalse

Las concentraciones de las diferentes formas del nitrógeno y del fósforo en las aguas superficiales y profundas del embalse, en la zona de la presa, se presentan en el siguiente cuadro:

	Marzo		Septiembre		
mg/L	S	F	S	F	
Nitrato	7,9	7,6	0,2	0,1	
Nitrito	0,11	0,04	0,02	0,07	
Amonio	0,1	0,1	0,1	0,3	
Fosfato disuelto	0,14	0,10	0,03	0,09	
Fósforo total	0,16	0,15	0,12	0,14	

Entre los compuestos del nitrógeno, el nitrato es moderado en marzo y muy bajo en septiembre, lo que se atribuye a su mayor consumo por el fitoplancton en verano (la concentración de clorofila en septiembre es mayor que la de marzo). La concentración de nitrito es baja, excepto en marzo (0,11 mg/L), lo que coincide con una concentración alta en el río Val. El amonio es bajo (0,1 mg/L) y aumenta ligeramente, en septiembre, en el agua de fondo de la presa por las condiciones anóxicas (0,3 mg/L).

Las concentraciones de fósforo total y fosfato son propias de aguas eutróficas.

Tributarios y emisario

	Marzo		Septiembre			
mg/L	Val	Queiles	Canal	Val	Queiles	Canal
Nitrato	13,9	10,8	10,6	5,2	7,5	
Nitrito	0,24	0,05	0,05	0,04	0,07	
Amonio	0,1	0,08	0,05	0,1	0,1	<0,05
Fosfato disuelto	0,36	0,04	0,05	0,31	0,04	
Fósforo total	0,42	0,07	0,08	0,47	0,09	

- El río Val presenta concentraciones moderadas de nitrato (5 14 mg/L) y bajas de nitrito (excepto 0,24 mg/L en marzo) y amonio (0,1 mg/L). Las concentraciones de fosfato y fósforo total son elevadas (0,3 0,4 mg/L) y propias de aguas eutróficas. Esto, junto a la concentración alta de nitrito, se atribuye a los vertidos no depurados que existen en el tramo alto del río (matadero, planta de tratamiento de purines y otras instalaciones industriales en Ágreda).
- En el río Queiles las concentraciones de los nutrientes son más bajas que en el río Val, excepto para el nitrato (7,5 10 mg/L) que son del mismo orden. A pesar de esto, las concentraciones de fósforo son propias de aguas moderadamente eutróficas (esto puede estar influido por vertidos existentes en la cuenca, entre los que se encuentran los de una piscifactoría).

4.1.5 Oxígeno disuelto

Embalse

Todo el embalse está bien oxigenado en marzo (figura 4.-1). En septiembre, se observa anoxia en las aguas hipolimnéticas, a partir de 13 m en el compartimento de la presa y a partir de 5 m en el resto del embalse (aguas arriba de la ataguía) (las respectivas oxiclinas coinciden con las termoclinas) (figura 4.-2). El agua profunda tenía un ligero olor a SH₂ pero éste no se detectó analíticamente.

Tributarios y emisario

El río Val aporta aguas oxigenadas al embalse (las del río Queiles también lo son). En septiembre, el agua vertida está bien oxigenada (82 % se saturación) ya que el nivel del agua anóxica se encuentra por debajo de la toma de riegos y además ésta cuenta con válvula de chorro hueco. Es presumible que en etapas menos avanzadas del verano, el nivel de anoxia estuviera por encima de la toma de riegos y que este agua contuviera SH₂. La descarga de agua anóxica a través de la válvula de chorro hueco debería oxigenar efectivamente las aguas, aunque es posible que en el primer tramo del canal el agua presentara olor y color blanquecino, al producirse la oxidación del SH₂ (según personal de la presa en agosto se produjo un vertido de aguas de color lechoso y fuerte olor, lo que dio origen a quejas de la vecindad).

4.1.6 Metales

Las concentraciones de hierro y manganeso (analizadas sólo en septiembre) son moderado-bajas en el embalse y en los tributarios. La concentración más elevada de hierro (0,39 mg/L) se mide en el río Val.

4.2 PARÁMETROS DEL SEDIMENTO

El sedimento, analizado en septiembre, presenta un contenido de carbono orgánico (73 mg/g) y de fósforo (1,42 mg/g) elevados, y de nitrógeno (2,6 mg/g) moderado. Esto puede estar influido por la descomposición de la vegetación del vaso y por el aporte de materia orgánica del río Val.

Clasificación de	C inorgánico	C. orgánico	N total	P total
Kelly et al. ²		mg/g sedimen	nto Peso Seco	
Contenido bajo	-	< 26,5	<1,65	<0,22
Contenido medio	1	26,5 – 65,5	1,65 – 57,7	0,22 – 1,17
Contenido elevado	ı	65,5 – 85,1	57,7 – 78,5	1,17 – 1,65
Cont. muy elevado	-	>85,1	>78,5	>1,65
Val	47	73	2,6	1,42

4.3 PARÁMETROS BIOLÓGICOS

4.3.1 Clorofila y fitoplancton

La clorofila presenta valores propios de aguas eutróficas, especialmente en septiembre.

	Marzo	Septiembre
Clorofila (mg/m³)	5,35	10,7

CHE EMBALSES/ VAL Febrero, 2002

² Kelly M., Hite R., Rogers K. 1984. Analysis of superficial sediment from 63 Illinois lakes. *Lake and Reservoir Management*: 248 – 252.

La composición y abundancia del fitoplancton se presenta en la tabla 4.-3. El macrofitoplancton (obtenido con red de arrastre) presenta características diferentes en marzo y en septiembre, de acuerdo con los modelos de mezcla-estratificación del embalse. En marzo dominan diatomeas (*Melosira varians*), lo cual es propio de periodos de mezcla (en este periodo el embalse se empieza a estratificar), y en septiembre predominan las cianofíceas (*Anabaena flosaquae*), lo que es característico de final de verano, en los embalses eutróficos.

La densidad del microfitoplancton (tabla 4.-3) se relaciona con el estado trófico. En ambos muestreos la densidad es superior a 5.000 células/ml, lo cual es propio de aguas eutróficas; los valores (15.533 en marzo y 13.717 cél./ml en septiembre) son del mismo orden de magnitud. En marzo los grupos más abundantes son clorofíceas (*Ankyra ancora*), diatomeas (*Cyclotella*) y crisofíceas. En septiembre, dominan las cianofíceas (*Anabaena flosaquae*, como en las muestras tomadas con red) (93%). Esta especie es susceptible de liberar toxinas (microcistina) en condiciones de proliferación (en septiembre la densidad es moderada, del orden de 12.800 cél./ml).

Las características del fitoplancton explican que coexistan valores altos de la transparencia del agua (5-6 m de profundidad del Disco de Secchi), con concentraciones también altas de clorofila y fitoplancton. Esto es porque hay especies que presentan un contenido elevado de clorofila pero que influyen menos en la pérdida de transparencia del agua; se trata de especies de tamaño grande y con capacidad de flotación que les permite formar capas finas en la superficie (*Anabaena flosaquae*).

4.3.2 Zoobentos

En septiembre se muestreó el sedimento profundo para el análisis del zoobentos. La muestra se tomó en la zona media del embalse, puesto que junto al muro (zona más profunda y anóxica) no existía depósito de lodos.

El zoobentos (tabla 4.-4) es escaso y está constituido por oligoquetos, dípteros caobóridos y moluscos. Los últimos son bastante diversos (5 taxones) aunque la mayoría tienen carácter fluvial, y su presencia en el fondo del embalse se debe a su arrastre desde el río Val.

La escasez del zoobentos es normal puesto que los sedimentos se encuentran en sus primeras etapas de colonización.

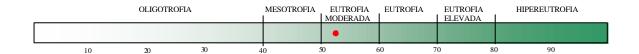
5 ESTADO TRÓFICO Y RIESGOS AMBIENTALES

5.1 EVALUACIÓN DEL ESTADO TRÓFICO DEL EMBALSE

En las fases iniciales de llenado de los embalses, es de gran interés estimar su estado trófico así como prever la posible evolución temporal. El análisis se efectúa a partir de la aplicación de criterios estandarizados como los de OCDE (Organización para la Cooperación y el Desarrollo Económico) y el índice del estado trófico de Carlson.

De acuerdo con los valores de referencia de la OCDE, y en base a los valores obtenidos en los dos muestreos efectuados en el 2001, el embalse es mesotrófico-eutrófico según la clorofila y la transparencia del agua, mientras que es hipereutrófico según la concentración de fósforo total.

Categoría trófica	Fósforo total mg/L (media anual)	Clorofila, mg/L (media anual)	Clorofila, mg/L (máximo anual)	D. de Secchi, m (media anual)	D. de Secchi, m (mínimo anual)
Ultraoligotrófico	<4	<1	<2,5	>12	>6
Oligotrófico	<10	<2,5	<8	>6	>3
Mesotrófico	10-35	2,5-8	8-25	6-3	3-1,5
Eutrófico	35-100	8-25	25-75	3-1,5	1,5-0,7
Hipertrófico	>100	>25	>75	<1,5	<0,7
Emb. de Val	142,5	8,0	10,7	5,6	5


^{*} Media de superficie y fondo en un muestreo.

La aplicación del índice de Carlson indica eutrofia moderada. En este caso se da más peso a la clorofila y profundidad del Disco de Secchi, que en este embalse reflejan condiciones más cercanas a la mesotrofia, que al fósforo cuyas concentraciones son muy elevadas y propias de aguas claramente eutróficas.

CHE EMBALSES/ VAL Febrero, 2002

Parámetros	Funciones del estado trófico por parámetros	Valor de los parámetros	Valor TSI
DS (m)	TSI(DS) = 60 - 14,41.ln DS	5,6	35
Clorofila (µg/L)	TSI (Clor.) = 9.81.ln Clor. + 30.6	8	51
P tot (µg/L)	TSI (P tot) = 14,42.ln P tot. + 4,15	142,5	76
-	Media $TSI = (TSI (DS) + TSI (Clor.) + TSI (P tot))/3$	-	54

De acuerdo con los indicadores analizados, y para la situación actual del embalse, el estado trófico es de eutrofia. Esto está influido por las aportaciones de nutrientes del río Val, y por las características hidrológicas (volumen reducido y baja renovación del agua³) que favorecen el aumento de la eutrofia. También podría influir la descomposición de la materia vegetal existente en el vaso.

5.2 RIESGOS AMBIENTALES

5.2.1 Situación actual

En la fase actual de llenado del embalse, el riesgo ambiental más importante es la desoxigenación del hipolimnion en verano y el vertido de aguas anóxicas y con tóxicos. La incidencia de este riesgo está controlada por las características de la toma y las normas de gestión del embalse:

- No hay vertido directo en el río, el cual sólo recibe las aportaciones del río Queiles cuyas aguas tienen una buena calidad. Esto limita los efectos medioambientales que podrían producirse si el agua anóxica alcanzara el río (mortandad de peces y de afecciones a las comunidades biológicas y pérdida de calidad del agua para abastecimiento).
- El desaguado del embalse se realiza a través de la toma de riegos que cuenta con válvula de chorro hueco que permite la oxigenación del agua; sin embargo si la concentración de SH₂ es elevada, su oxidación puede dar lugar a aguas blanquecinas y con olor en el primer

³ El tiempo de residencia aproximado es de unos 4 meses, suponiendo una salida de 350 L/s.

tramo de la acequia de riego. Esto supone un problema, puesto que el núcleo urbano de Los Fallos se encuentra muy cerca de la presa y la acequia discurre cerca de las viviendas por lo que el intenso olor del agua puede ser causa de molestias para sus habitantes⁴.

5.2.2 Situaciones futuras

Si se mantiene el embalse sólo con aportaciones del río Val es de esperar que el estado trófico se mantenga o incluso aumente, lo que podría ser causa de otros riesgos ambientales derivados de la proliferación de algas cianofíceas al final del verano.

Si se inician las aportaciones del río Queiles al embalse, el estado trófico disminuirá presumiblemente, puesto que éste río tiene una carga de nutrientes inferior a la del río Val. Sin embargo, el riesgo de desoxigenación del hipolimnion persistirá, especialmente mientras el embalse presente niveles de llenado bajos.

Otro riesgo a tener en consideración es la pérdida de calidad biológica del tramo fluvial bajo la presa, favorecido por las obras de cimentación del cauce fluvial. Además se deberá asegurar un caudal ecológico que sería recomendable que procediera directamente del río Queiles, en verano, mientras no se garantice la buena calidad de las aguas procedentes del embalse.

La calidad del agua del río, aguas abajo de la presa, puede verse afectada por los vertidos del municipio de Los Fallos. En la actualidad se ha construido una depuradora pero ésta no ha funcionado durante el periodo de estudio.

_

⁴ Este verano de produjo un incidente de este tipo de acuerdo con la información del personal de la presa.

Apéndice 1

Tablas

Tabla 4.-1 Resultados de los análisis hidroquímicos realizado en el embalse de Val, en marzo de 2001.

		Embalse	e - presa	Tributario 1	Tributario 2	Emisario
	Unidades	Superfície	Fondo	Río Val	Río Queiles	Canal riego ¹
Profundidad	m	S	23	S	S	S
Temperatura	°C	11,4	8,3	12,6	12,4	12,0
Conductividad	μS/cm	820	832	834	395	505
Turbidez	ntu	1,3	1,0			
Sólidos en suspensión	mg/L	1,6				
рН	und.	8,67	8,36	8,23	8,32	8,31
Alcalinidad	meq/L	4,08	4,18	4,39	2,53	2,92
Calcio	mg/L	126,3	128,3	134,3	70,1	88,2
Nitrito	mg/L	0,108	0,038	0,237	0,050	0,052
Nitrato	mg/L	7,9	7,6	13,9	10,8	10,6
Amonio	mg/L	0,1	0,1	0,1	0,08	0,05
Fósforo total	mg/L	0,163	0,152	0,424	0,071	0,086
Fosfato disuelto (P-PO ₄)	mg/L	0,135	0,096	0,358	0,035	0,053
Oxígeno disuelto	mg/L	12,20	9,20	9,95	9,95	10,33
Clorofila	mg/m ³	5,35				
Profundidad disco de Secchi	m	5				

 $^{^{\}rm l}$ Se muestreó la mezcla de las aguas del canal que procede del embalse y de la acequia Magallón Grande que deriva agua del río Queiles.

Tabla 4.-2 Resultados de los análisis hidroquímicos y del sedimento realizado en el embalse de Val, en septiembre de 2001.

		Embalse	e - presa	Tributario 1	Tributario 2	Emisario
P. HIDROQUÍMICOS	Unidades	Superfície	Fondo	Río Val	Río Queiles	Canal riego
Profundidad	m	S	15	S	S	S
Temperatura	°C	18,6	11,66	11,48	14,02	18,45
Conductividad	μS/cm	704	783	802	532	716
Turbidez	ntu	nd	nd	52	nd	nd
Sólidos en suspensión	mg/L	1,6	1,6	49,2	3,1	
рН	und.	7,56	7,75	7,68	8,08	7,77
Alcalinidad	meq/L	2,9	3,4	4,6	3,4	
Calcio	mg/L	102,2	126,3	146,3	100,2	
Nitrito	mg/L	0,024	0,071	0,043	0,071	
Nitrato	mg/L	0,2	0,1	5,2	7,5	
Amonio	mg/L	0,1	0,3	0,1	0,1	<0,05
Fósforo total	mg/L	0,121	0,142	0,473	0,092	
Fosfato disuelto (P-PO4)	mg/L	0,026	0,093	0,312	0,036	
Oxígeno disuelto	mg/L	6,9	0	8,8	9	7,5
Hierro	mg/L	0,05	0,02	0,39	<0,02	
Manganeso	mg/L	0,02	0,17	0,05	<0,02	
Clorofila	mg/m ³	10,7				
Profundidad disco de Secchi	m	6,1				

SEDIMENTO	Presa	
Carbono orgánico	mg/g COT	73
Carbono inorgánico	mg/g C	47
Nitrógeno Total	mg/g sed.P.S	2,6
Fósforo Total	mg/g sed.P.S	1,42

Tabla 4.-3 Inventario y recuentos del fitoplancton del embalse de Val, en marzo y septiembre de 2001.

INVENTARIO MACROFITOPLANCTON	Abur	ndancia ¹
INVENTARIO MACROFITOT LANCTON	marzo-01	septiembre-01
CIANOFÍCEAS		
Anabaena flosaquae	-	5
CRISOFÍCEAS		
Mallomonas sp.	2	1
DIATOMEAS		
Diatoma hiemale	+	_
Fragilaria crotonensis	+	+
Melosira varians	5	1
S. ulna	+	-
Synedra acus	+	-
CLOROFÍCEAS		
Volvox aurens	-	1
Pediastrum duplex	=	1
P. boryanum	-	+
P. clathratum	=	1
Staurastrum sp.	-	+
Spirogyra sp.	1	-
Mougeotia sp.	+	-
PERIDINEALES		
Ceratium hirundinella	-	1

¹5 = >61 %; 4 = 31-60 %; 3 = 11-30 %; 2 = 1-10 %; 1<1%;+ = presencia

RECUENTOS MICROFITOPLANCTON	Células/ml	%	Células/ml	%
RECUENTOS MICROFITOFLANCION	Marz	zo-01	Septiembre-01	
CIANOFICEAS (%)		-		93,31
Anabaena flosaquae	-		12.800	
CRIPTOFICEAS (%)		6,78		3,18
Cryptomonas ovata	33		280	
C. marsonii	126			
Rhodomonas minuta	1.020		156	
CRISOFICEAS (%)		24,57		0,74
Mallomonas sp.	6			
Flagelados sp. pl.	3.816		102	
DIATOMEAS (%)		19,83		
Melosira varians	12			
Cyclotella sp.	3.060			
Diatomeas bentónicas	8			
CLOROFICEAS (%)		47,98		2,74
Chlamydomonas sp.	36		11	
Ankyra ancora	7.416		365	
PERIDINEALES (%)		-		0,02
Ceratium hirundinella			3	
TOTAL	15.533	100	13.717	100

² Concentrado de 50 ml

Tabla 4.-4. Composición del zoobentos del embalse de Val, en septiembre de 2001.

	Ind./m ²		
OLIGOQUETOS			
	Naididos		50
	Tubifícidos c.s.c inmaduros		50
INSECTOS			
DÍPTEROS			
	Caobóridos	Chaoborus sp.	25
MOLUSCOS			
	Físidos	Physella sp.	+
	Hidróbidos	Potamopyrgus sp.	+
	Limneidos	Lymnaea sp.	+
	Planórbidos	Armiger crista	+
	Esferícidos	Pisidium sp.	+
	Nº TAXONES		8
	N° INDIVIDUOS/M²		125

Apéndice 2

Figuras

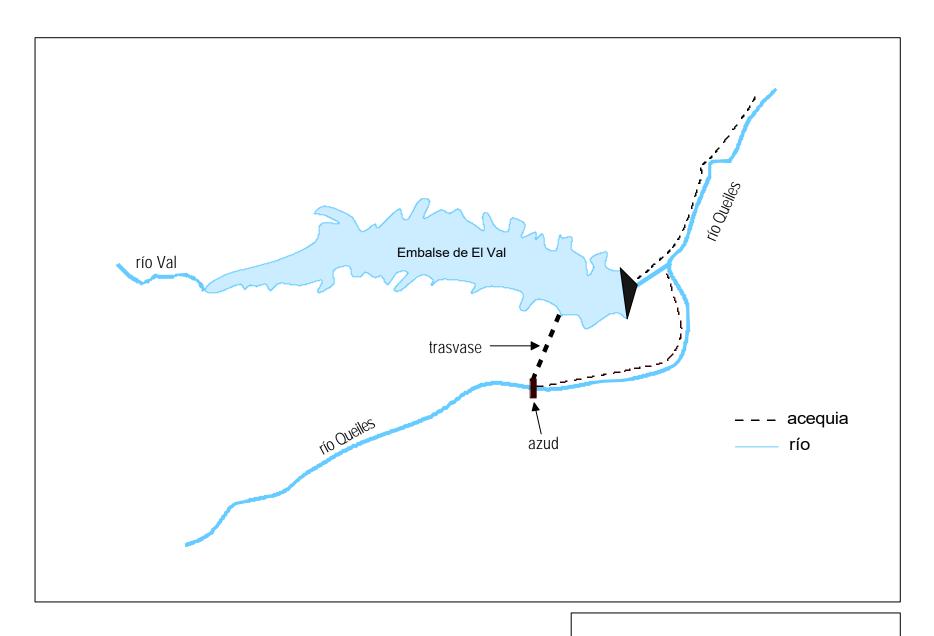


Figura 2.-1 Esquema del Sistema Val - Queiles.

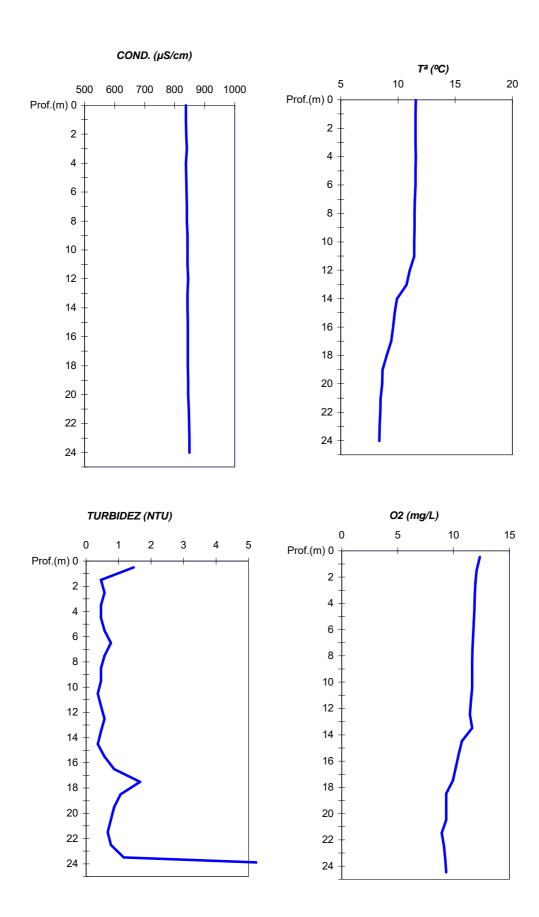


Figura 4.-1 Perfiles de conductividad, temperatura, turbidez y oxígeno disuelto en el agua del embalse, el día 19 de marzo de 2001. Cota: 584.

EMBALSE DE VAL

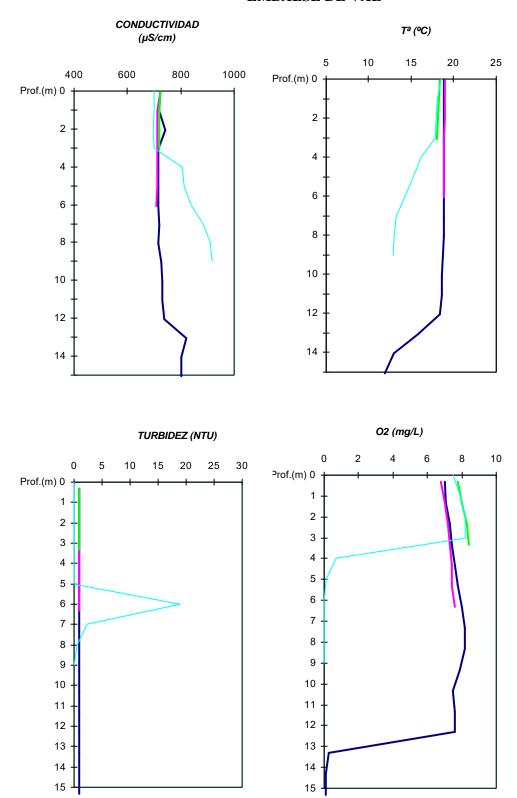


Figura 4.-2
Perfiles de conductividad,temperatura, turbidez y oxígenodisuelto en el agua del embalse, el día 26 de septiembre de 2001. Presa (azul); punto medio antes de la ataguía (rosa); punto medio después de la ataguía (azul claro); cola (verde). Cota: 582.

Apéndice 3

Fotos

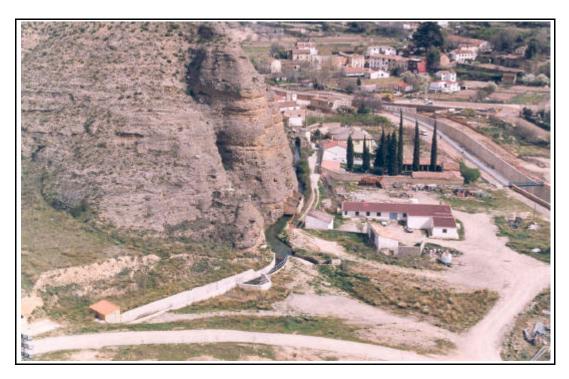
Fotos 1 y 2 Panorámicas de la presa de Val.

Fotos 3 y 4

Embalse de Val en la primera fase de llenado (cota 584 m s.n.m.). En la foto inferior se observa el tramo final del trasvase del río Queiles.

Fotos 5 y 6

Río Val aguas arriba del embalse. El cauce es estrecho y discurre entre prados secos.



Fotos 7 y 8

Azud del trasvase y canal en el río Queiles.

URS

Fotos 9 y 10

Vistas de la explanada fluvial bajo la presa. En la foto superior se aprecia la acequia de Magallón (en la izquierda) y el tramo canalizado del río Queiles (en la derecha). En la foto inferior se muestra detalle de la canalización del río.

ADICIONAL INFORME EMBALSE DE EL VAL 2001

Durante el año 2022 se han revisado los datos del embalse de El Val recopilados durante el año 2001, en aplicación del Real Decreto 817/2015, de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental, a partir de la trasposición de la Directiva Marco del Agua (DMA).

La metodología utilizada ha consistido en obtener del informe de dicho año los datos necesarios para estimar de nuevo el estado trófico y el potencial ecológico y, recalcular el valor correspondiente en cada variable y en el estado final del embalse, utilizando las métricas publicadas en 2015, lo que permite comparar el estado de los embalses en un ciclo interanual de forma homogénea.

En cada apartado considerado se indica la referencia del apartado del informe original al que se refiere este trabajo adicional.

1. ESTADO TRÓFICO

Para evaluar el grado de eutrofización o estado trófico de una masa de agua se aplican e interpretan una serie de indicadores de amplia aceptación. En cada caso, se ha tenido en cuenta el valor de cada indicador en función de las características limnológicas básicas de los embalses. Así, se han podido interpretar las posibles incoherencias entre los diversos índices y parámetros y establecer la catalogación trófica final en función de aquellos que, en cada caso, responden a la eutrofización de las aguas.

Dentro del presente estudio se han considerado los siguientes índices y parámetros:

a) Concentración de nutrientes. Fósforo total (PT)

La concentración de fósforo total en el epilimnion del embalse es un parámetro decisivo en la eutrofización ya que suele ser el factor limitante en el crecimiento y reproducción de las poblaciones algales o producción primaria. De entre los índices conocidos, se ha adoptado en el presente estudio, el utilizado por la Organización para la Cooperación y el Desarrollo Económico (OCDE) resumido en la tabla A1, ya que es

el que mejor refleja el grado trófico real en los casos estudiados y además es el de más amplio uso a nivel mundial y en particular en la Unión Europea (UE), España y la propia Confederación Hidrográfica del Ebro (CHE). Desde 1984 se demostró que los criterios de la OCDE, que relacionan la carga de nutrientes con las respuestas de eutrofización, eran válidos para los embalses españoles.

Tabla A1. Niveles de calidad según la concentración de fósforo total.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración PT (µg					
P/L)	0-4	4-10	10-35	35-100	>100

b) Fitoplancton (Clorofila a, densidad algal)

A diferencia del anterior, el fitoplancton es un indicador de respuesta trófica y, por lo tanto, integra todas las variables causales, de modo que está influido por otros condicionantes ambientales además de estarlo por los niveles de nutrientes. Se utilizan dos parámetros como estimadores de la biomasa algal en los índices: concentración de clorofila a en la zona fótica (µg/L) y densidad celular (nº células/ml).

Al contar en este estudio mayoritariamente con sólo una campaña de muestreo, y por tanto no contar con una serie temporal que nos permitiera la detección del máximo anual, se utilizaron las clases de calidad relativas a la media anual (tabla A2). La utilización de los límites de calidad relativos a la media anual de clorofila se basó en el hecho de que los muestreos fueron realizados durante la estación de verano. Según la bibliografía limnológica general, el verano coincidiría con un descenso de la producción primaria motivado por el agotamiento de nutrientes tras el pico de producción típico de finales de primavera. Por ello, la utilización de los límites o rangos relativos al máximo anual resultaría inadecuada.

Para la densidad celular, basamos nuestros límites de estado trófico en la escala logarítmica basada en los estudios limnológicos de Margalef, ya utilizada para incluir más clases de estado trófico en otros estudios (tabla A2). Estos resultados se ajustaban de forma más aproximada a los obtenidos mediante otras métricas estándar de la OCDE como las de P total o clorofila. En el presente estudio, los índices elegidos son los siguientes:

Tabla A2. Niveles de calidad según la clorofila a y la densidad algal del fitoplancton.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000

c) Transparencia de la columna de agua. Disco de Secchi (DS)

Por su parte, la transparencia, medida como profundidad de visibilidad del disco de Secchi (media y mínimo anual en m), está también íntimamente relacionada con la biomasa algal, aunque más indirectamente, ya que otros factores como la turbidez debida a sólidos en suspensión, o los fenómenos de dispersión de la luz que se producen en aguas carbonatadas, afectan a esta variable.

Se utilizaron las clases de calidad relativas al mínimo anual de transparencia según criterios OCDE. Se utilizaron en este caso los rangos relativos al mínimo anual (tabla A3) debido a varios factores: por un lado, la transparencia en embalses es generalmente menor que en lagos; por otro lado, en verano se producen resuspensiones de sedimentos como consecuencia de los desembalses para regadío, y por último, la mayoría de los embalses muestreados son de aguas carbonatadas, con lo que la profundidad de Secchi subestimaría también la transparencia.

Tabla A3. Niveles de calidad según la transparencia.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Disco Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7

Catalogación trófica final

Se han considerado la totalidad de los índices expuestos, que se especifican en la tabla A4, estableciéndose el estado trófico global de los embalses estudiados según la metodología descrita a continuación, utilizando el valor promedio de los dos muestreos en su caso.

Tabla A4. Resumen de los parámetros indicadores de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración PT (μg	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000

Sobre la base de esta propuesta, en la tabla A5 se incluye la catalogación de las diferentes masas de agua por parámetro. Así, para cada uno de los embalses, se asignó un valor numérico (de 1 a 5) según cada clase de estado trófico.

Tabla A5. Valor numérico asignado a cada clase de estado trófico.

ESTADO TRÓFICO	VALORACIÓN
Ultraoligotrófico	1
Oligotrófico	2
Mesotrófico	3
Eutrófico	4
Hipereutrófico	5

La valoración del estado trófico global final se calculó mediante la *media* de los valores anteriores, re-escalada a cinco rangos de estado trófico (es decir, el intervalo 1-5, de 4 unidades, dividido en 5 rangos de 0,8 unidades de amplitud).

2. ESTADO DE LA MASA DE AGUA

El **estado** de una masa de agua es el grado de alteración que presenta respecto a sus condiciones naturales, y viene determinado por el *peor valor* de su estado ecológico y químico.

- El <u>estado ecológico</u> es una expresión de la calidad de la estructura y el funcionamiento de los ecosistemas acuáticos asociados a las aguas superficiales en relación con las condiciones de referencia (es decir, en ausencia de alteraciones). En el caso de los embalses se denomina *potencial ecológico* en lugar de estado ecológico. Se determina a partir de indicadores de calidad (biológicos y fisicoquímicos).

 El <u>estado químico</u> de las aguas es una expresión de la calidad de las aguas superficiales que refleja el grado de cumplimiento de las normas de calidad ambiental de las sustancias prioritarias y otros contaminantes.

2.1. POTENCIAL ECOLÓGICO

2.1.1. INDICADORES DE CALIDAD BIOLÓGICOS: FITOPLANCTON

Como consecuencia de la aprobación de la IPH (Instrucción de Planificación Hidrológica, Orden ARM/2656/2008), se ha realizado una aproximación al <u>potencial ecológico</u> para el elemento de calidad <u>fitoplancton</u> denominada *propuesta normativa*. En ella se establecen las condiciones de máximo potencial para los siguientes parámetros: clorofila a, biovolumen, Índice de Grupos Algales (IGA) y porcentaje de cianobacterias, en función de la tipología del embalse.

Se debe seguir el procedimiento descrito en el Protocolo MFIT-2013 Versión 2 para el cálculo del RCE de cada uno de los cuatro parámetros:

- Cálculo de Ratio de Calidad Ecológico (RCE)

Cálculo para clorofila a:

RCE= [(1/Chla Observado) / (1/Chla Máximo Potencial Ecológico)]

Cálculo para biovolumen:

RCE= [(1/biovolumen Observado) / (1/ biovolumen Máximo Potencial Ecológico)]

Cálculo para el Índice de Grupos Algales (IGA):

RCE= [(400-IGA Observado) / (400- IGA Máximo Potencial Ecológico)]

Cálculo para el porcentaje de cianobacterias:

RCE= [(100 - % cianobacterias Observado) / (100 - % cianobacterias Máximo Potencial Ecológico)]

1) Concentración de clorofila a

Del conjunto de pigmentos fotosintetizadores de las microalgas de agua dulce, la clorofila a se emplea como un indicador básico de biomasa fitoplanctónica. Todos los grupos de microalgas contienen clorofila a como pigmento principal, pudiendo llegar a

representar entre el 1 y el 2 % del peso seco total. La clasificación del potencial ecológico de acuerdo con la concentración de clorofila *a* se indica en la tabla A6.

Tabla A6. Clases de potencial ecológico según el RCE de la concentración de clorofila a.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,211	0,210 - 0,14	0,13 - 0,07	< 0,07
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,433	0,432 - 0,287	0,286 - 0,143	< 0,143
Rango <i>Tipo 12</i>	> 0,195	0,194 – 0,13	0,12 - 0,065	< 0,065
Rango <i>Tipo 13</i>	> 0,304	0,303 - 0,203	0,202 - 0,101	< 0,101
Valoración de cada clase	2	3	4	5

2) Biovolumen algal

El biovolumen es una medida mucho más precisa de la biomasa algal, por tener en cuenta el tamaño o volumen celular de cada especie, además del número de células. La clasificación del potencial ecológico de acuerdo al biovolumen de fitoplancton se indica en la tabla A7.

Tabla A7. Clases de potencial ecológico según el RCE del biovolumen algal del fitoplancton.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,189	0,188 - 0,126	0,125 - 0,063	< 0,063
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,362	0,361 – 0,24	0,23 - 0,12	< 0,12
Rango Tipo 12	> 0,175	0,174 – 0,117	0,116 – 0,058	< 0,058
Rango Tipo 13	> 0,261	0,260 - 0,174	0,173 – 0,087	< 0,087
Valoración de cada clase	2	3	4	5

3) Índice de grupos algales (IGA)

Se ha aplicado un índice basado en el biovolumen relativo de diferentes grupos algales del fitoplancton, denominado *IGA*, y que viene siendo utilizado por CHE desde 2010.

El índice IGA se expresa:

$$Iga = \frac{1 + 0.1 * Cr + Cc + 2 * (Dc + Chc) + 3 * Vc + 4 * Cia}{1 + 2 * (D + Chc) + Chnc + Dhc}$$

Siendo,

Cr	Criptófitos	Cia	Cianobacterias
Сс	Crisófitos coloniales	D	Dinoflageladas
Dc	Diatomeas coloniales	Cnc	Crisófitos no coloniales
Chc	Clorococales coloniales	Chnc	Clorococales no coloniales
Vc	Volvocales coloniales	Dnc	Diatomeas no coloniales

En cuanto al *IGA*, se han considerado los rangos de calidad establecidos en la tabla A8.

Tabla A8. Clases de potencial ecológico según el RCE del Índice de Grupos Algales (IGA).

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,974	0,973 - 0,649	0,648 - 0,325	< 0,325
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,982	0,981 – 0,655	0,654 - 0,327	< 0,327
Rango Tipo 12	> 0,929	0,928 - 0,619	0,618 – 0,31	< 0,31
Rango Tipo 13	> 0,979	0,978 - 0,653	0,652 - 0,326	< 0,326
Valoración de cada clase	2	3	4	5

4) Porcentaje de cianobacterias

El aumento de la densidad relativa de cianobacterias se ha relacionado en numerosas ocasiones con procesos de eutrofización.

Para el cálculo del porcentaje de cianobacterias se ha utilizado el procedimiento descrito en el Protocolo de análisis y cálculo de métricas de fitoplancton en lagos y embalses Versión 2 (MAGRAMA, 2016). Se aplica para el cálculo la siguiente fórmula:

$$\%CIANO = \frac{\text{BVOLcia} - \left[\text{BVOLchr} - \left(\text{BVOLmic} + \text{BVOLwor}\right)\right]}{BVOLtot}$$

Donde: BVOL_{CIA} Biovolumen de cianobacterias totales

BVOL_{CHR} Biovolumen de Chroococcales

BVOL_{MIC} Biovolumen de *Microcystis*

BVOLWOR Biovolumen de Woronichinia

BVOL_{TOT} Biovolumen total de fitoplancton

Los valores de cambio de clases se establecen como se muestran en la tabla A9.

Tabla A9. Clases de potencial ecológico según el RCE del porcentaje de cianobacterias.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,908	0,907 - 0,607	0,606 - 0,303	< 0,303
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,715	0,714 - 0,48	0,47 - 0,24	< 0,24
Rango <i>Tipo 12</i>	> 0,686	0,685 - 0,457	0,456 - 0,229	< 0,229
Rango <i>Tipo 13</i>	> 0,931	0,930 - 0,621	0,620 - 0,31	< 0,31
Valoración de cada clase	2	3	4	5

Posteriormente, es necesario llevar a cabo la *transformación de los valores de RCE obtenidos* a una escala numérica equivalente para los cuatro indicadores (RCEtrans). Las ecuaciones varían en función del tipo de embalse.

Tipos 1, 2 y 3

Clorofila a				
RCE>0,21	RCE _{trans} = 0,5063 x RCE + 0,4937			
RCE ≤0,21	RCE _{trans} = 2,8571 x RCE			
	•			

Biovolumen			
RCE >0,19 RCE _{trans} = 0,4938 x RCE + 0,5062			
RCE ≤0,19	RCE _{trans} = 3,1579 x RCE		

% Cianobacterias	
RCE >0,91	RCE _{trans} = 4,4444 x RCE - 3,4444
RCE ≤0,91	RCE _{trans} = 0,6593 x RCE

Índice de Grupos Algales (IGA)	
RCE >0,9737	RCE _{trans} = 15,234 x RCE - 14,233
RCE ≤0,9737	RCE _{trans} = 0,6162 x RCE

Tipos 7, 8, 9, 10 y 11

Clorofila a	
RCE>0,43	RCE _{trans} = 0,7018 x RCE + 0,2982
RCE ≤0,43	RCE _{trans} = 1,3953 x RCE

Biovolumen	
RCE >0,36	RCE _{trans} = 0,625 x RCE + 0,375
RCE ≤0,36	RCE _{trans} = 1,6667 x RCE

% Cianobacterias	
RCE >0,72	RCE _{trans} = 1,4286 x RCE - 0,4286
RCE ≤0,72	RCE _{trans} = 0,8333 x RCE

Índice de Grupos Algales (IGA)	
RCE >0,9822	RCE _{trans} = 22,533 x RCE - 21,533
RCE ≤0,9822	RCE _{trans} = 0,6108 x RCE

Tipos 6 y 12

Clorofila a	
RCE >0,195	RCE _{trans} =0,497x RCE + 0,503
RCE ≤ 0,195	RCE _{trans} = 3,075 x RCE

Biovolumen	
RCE > 0,175	RCE _{trans} = 0,4851 x RCE + 0,5149
RCE ≤ 0,175	RCE _{trans} = 3,419 x RCE

% Cianobacterias	
RCE > 0,686	RCE _{trans} = 1,2726x - 0,2726
RCE ≤ 0,686	RCE _{trans} = 0,875 x RCE

Índice de Grupos Algales (IGA)	
RCE > 0,929	RCE _{trans} = 5,6325x - 4,6325
RCE ≤ 0,929	RCE _{trans} = 0,6459 x RCE

Tipo 13

Clorofila a	
RCE > 0,304	RCE _{trans} = 0,575 x RCE + 0,425
RCE ≤ 0,304	RCE _{trans} = 1,9714 x RCE

Biovolumen	
RCE > 0,261	RCE _{trans} = 0,541x RCE + 0,459
RCE ≤ 0,261	RCE _{trans} = 2,3023 x RCE

% Cianobacterias			
RCE > 0,931 RCE _{trans} = 5,7971 x RCE - 4,7971			
RCE ≤ 0,931	RCE _{trans} = 0,6445 x RCE		

Índice de Grupos Algales (IGA)				
RCE > 0,979 RCE _{trans} = 18,995 x RCE - 17,995				
RCE ≤ 0,979	RCE _{trans} = 0,6129 x RCE			

Para la combinación de los distintos indicadores representativos del elemento de calidad fitoplancton se hallará la *media* de los RCE transformados correspondientes a los parámetros "abundancia-biomasa" y "composición". La combinación de los RCE transformados se llevará a cabo primero para los indicadores de clorofila y biovolumen, ambos representativos de la <u>abundancia</u>. La combinación se hará mediante las *medias* de los RCE transformados.

Posteriormente se llevará a cabo la combinación de los indicadores representativos de la <u>composición</u>: porcentaje de cianobacterias y el IGA. La combinación se hará mediante las *medias* de los RCE transformados. Finalmente, para la combinación de los indicadores de composición y abundancia-biomasa se hará la *media aritmética*.

El valor final de la combinación de los RCE transformados se clasificará de acuerdo a la siguiente escala de la tabla A10:

Tabla A10. Ratios de calidad según el índice de potencial ecológico normativo RCEtrans.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
RCEtrans	> 0,6	0,4-0,6	0,2-0,4	<0,2
Valoración de cada clase	2	3	4	5

Tabla A11. Valores de referencia propios del tipo (VR_t) y límites de cambio de clase de potencial ecológico (B $^+$ /M, Bueno o superior-Moderado; M/D, Moderado-Deficiente; D/M, Deficiente-Malo) de los indicadores de los elementos de calidad de embalses (*RD 817/2015*). Se han incluido sólo los tipos de embalses presentes en el ESTUDIO.

Tipo	Elemento	Parámetro	Indicador	VRt	B ⁺ /M (RCE)	M/D (RCE)	D/M (RCE)
		Diaman	Clorofila a mg/m ³	2,00	0,211	0,14	0,07
		Biomasa	Biovolumen mm ³ /L	0,36	0,189	0,126	0,063
Tipo 1	Fitoplancton		Índice de Catalán (IGA)	0,10	0,974	0,649	0,325
		Composición	Porcentaje de cianobacterias	0,00	0,908	0,607	0,303
		5.	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm³/L	0,76	0,362	0,24	0,12
Tipo 7	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Diamaga	Clorofila a mg/m³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 9	' ' '		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Diaman	Clorofila a mg/m³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 10	Fitoplancton	on	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Piomoco	Clorofila a mg/m³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 11	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m ³	2,40	0,195	0,13	0,065
		Biomasa	Biovolumen mm ³ /L	0,63	0,175	0,117	0,058
Tipo 12	Fitoplancton		Índice de Catalán (IGA)	1,50	0,929	0,619	0,31
		Composición	Porcentaje de cianobacterias	0,10	0,686	0,457	0,229
		Diamaga	Clorofila a mg/m³	2,10	0,304	0,203	0,101
		Biomasa	Biovolumen mm ³ /L	0,43	0,261	0,174	0,087
Tipo 13	Fitoplancton		Índice de Catalán (IGA)	1,10	0,979	0,653	0,326
		Composición	Porcentaje de cianobacterias	0,00	0,931	0,621	0,31

2.1.2. INDICADORES DE CALIDAD FISICOQUÍMICOS

Todavía la normativa no ha desarrollado qué indicadores fisicoquímicos se emplean en embalses, pero por similitud con los que se recogen para lagos (Real Decreto 817/2015) se utilizan los siguientes:

1) Transparencia

La transparencia es un elemento válido para evaluar el grado trófico del embalse; tiene alta relación con la productividad biológica; y además tiene rangos establecidos fiables y de utilidad para el establecimiento de los límites de clase del potencial ecológico. Se ha evaluado a través de la profundidad de visión del disco de Secchi (DS), considerando su valor para la obtención de las distintas clases de potencial (tabla A12).

Tabla A12. Clases de potencial ecológico según la profundidad de visión del Disco de Secchi.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Disco de Secchi (DS, m)	> 6	6 - 3	< 3
Valoración de cada clase	1	2	3

2) Condiciones de oxigenación

Representa un parámetro secundario de la respuesta trófica que viene a indicar la capacidad del sistema para asimilar la materia orgánica autóctona, generada por el propio sistema a través de los productores primarios en la capa fótica, y la materia orgánica alóctona, es decir, aquella que procede de fuentes externas al sistema, como la procedente de focos de contaminación puntuales o difusos.

Se ha evaluado estimando la reserva media de oxígeno hipolimnético en el periodo de muestreo, correspondiente al periodo de estratificación. En el caso de embalses no estratificados se consideró la media de oxígeno en toda la columna de agua. Las clases consideradas han sido las correspondientes a la concentración de oxígeno en la columna de agua; parámetro vital para la vida piscícola. En la tabla A13 se resumen los límites establecidos.

Tabla A13. Clases de potencial ecológico según la concentración de oxígeno disuelto en el hipolimnion o en toda la columna de agua, cuando el embalse no está estratificado.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Concentración hipolimnética (mg/L O ₂)	> 8	8 - 6	< 6
Valoración de cada clase	1	2	3

3) Concentración de nutrientes

En este caso se ha seleccionado el fósforo total (PT), ya que su presencia a determinadas concentraciones en un embalse acarrea procesos de eutrofización, pues en la mayoría de los casos es el principal elemento limitante para el crecimiento de las algas.

Se ha empleado el resultado obtenido en la muestra integrada, considerando los criterios de la OCDE especificados en la tabla A14 (OCDE, 1982) adaptado a los intervalos de calidad del RD 817/2015.

Tabla A14. Clases de potencial ecológico según la concentración de fósforo total.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Concentración de PT (μg P/L)	0 - 4	4 -10	> 10
Valoración de cada clase	1	2	3

Si se toman varios datos anuales, se hace la *mediana* de los valores anuales.

Posteriormente se elige el *peor valor* de los tres indicadores (transparencia, condiciones de oxigenación y fósforo total).

4) Sustancias preferentes y contaminantes específicos de cuenca

Dentro de los indicadores fisicoquímicos también se tienen en cuenta las **sustancias preferentes y contaminantes específicos de cuenca.** El valor medio de los datos anuales se revisa para ver si *cumple o no con la Norma de Calidad Ambiental* (NCA) del *Anexo V del RD 817/2015*. Si *incumple* supone asignarle para los indicadores fisicoquímicos la categoría de *moderado*.

Tabla A15. Clases de potencial ecológico para sustancias preferentes y contaminantes específicos de cuenca.

Clase de potencial ecológico	Muy Bueno	Moderado
Sustancias preferentes y contaminantes específicos de cuenca	Cumple NCA	No cumple NCA
Valoración de cada clase	2	3

El <u>potencial ecológico</u> resulta del *peor valor* entre los indicadores biológicos y fisicoquímicos.

Tabla A16. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico
Bueno o superior	Muy bueno	Bueno o superior
Bueno o superior	Bueno	Bueno o superior
Bueno o superior	Moderado	Moderado
Moderado		Moderado
Deficiente	Indistinto	Deficiente
Malo		Malo

2.2. ESTADO QUÍMICO

El <u>estado químico</u> es "*no bueno*" cuando hay algún incumplimiento de la Norma de Calidad Ambiental, bien sea como media anual (NCA_MA), como máximo admisible (NCA_CMA) o en la biota (NCA_biota) para las **sustancias prioritarias y otros contaminantes**. Las NCA se recogen en el *Anexo IV del RD 817/2015*.

Tabla A17. Clases de estado químico para sustancias prioritarias y otros contaminantes.

Clase de estado químico	Bueno	No alcanza el buen estado
Sustancias prioritarias y otros contaminantes	Cumple NCA	No cumple NCA
Valoración de cada clase	2	3

2.3. ESTADO

El <u>estado</u> de la masa de agua es el *peor valor* entre su potencial ecológico y su estado químico.

Tabla A18. Determinación del estado.

Estado	Estado Químico			
Potencial Ecológico	Bueno	No alcanza el buen estado		
Bueno o superior	Bueno			
Moderado		Inferior a bueno		
Deficiente	Inferior a bueno			
Malo				

DIAGNÓSTICO DEL ESTADO TRÓFICO DEL EMBALSE DE EL VAL

Se han considerado los indicadores especificados en la tabla A19 para los valores medidos en el embalse, estableciéndose el estado trófico global del embalse según la metodología descrita.

Tabla A19. Parámetros indicadores y rangos de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (µg P /L)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000
VALOR PROMEDIO	< 1,8	1,8 – 2,6	2,6 - 3,4	3,4 - 4,2	> 4,2

En la tabla A20a y A20b se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final para la campaña de muestreo de primavera y de verano.

Tabla A20a. Diagnóstico del estado trófico del embalse de El Val en el muestreo de primavera.

INDICADOR	VALOR	ESTADO TRÓFICO
CONCENTRACIÓN P TOTAL	163,00	Hipertrófico
DISCO SECCHI	5,00	Oligotrófico
CLOROFILA a	5,35	Mesotrófico
DENSIDAD ALGAL	15533	Eutrófico
ESTADO TRÓFICO FINAL	3,50	EUTRÓFICO

Tabla A20b. Diagnóstico del estado trófico del embalse de El Val en el muestreo de verano.

INDICADOR	VALOR	ESTADO TRÓFICO
CONCENTRACIÓN P TOTAL	121,00	Hipertrófico
DISCO SECCHI	6,10	Ultraoligotrófico
CLOROFILA a	10,70	Eutrófico
DENSIDAD ALGAL	13717	Eutrófico
ESTADO TRÓFICO FINAL	3,50	EUTRÓFICO

En la tabla A20c se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final para este año a partir del promedio de los dos valores de muestreo de primavera y de verano.

Tabla A20c. Diagnóstico del estado trófico del embalse de El Val promedio anual.

INDICADOR	VALOR	ESTADO TRÓFICO
CONCENTRACIÓN P TOTAL	142,00	Hipertrófico
DISCO SECCHI	5,55	Oligotrófico
CLOROFILA a	8,03	Eutrófico
DENSIDAD ALGAL	14625	Eutrófico
ESTADO TRÓFICO FINAL	3,75	EUTRÓFICO

Atendiendo a los criterios seleccionados, la concentración de P total ha clasificado el embalse como hipertrófico; la transparencia como oligotrófico; la concentración de clorofila *a* como eutrófico y la densidad algal como eutrófico. Combinando todos los indicadores, el estado trófico final anual para el embalse de El Val ha resultado ser **EUTRÓFICO**.

DIAGNÓSTICO DEL ESTADO FINAL DEL EMBALSE DE EL VAL

En la mayoría de los casos en lugar del estado de la masa, sólo se puede establecer el potencial ecológico (además sin tener en cuenta la presencia de sustancias preferentes y contaminantes específicos de cuenca, para los indicadores fisicoquímicos). Tampoco se han estudiado las sustancias prioritarias y otros contaminantes que permitan determinar el estado químico, por eso se diagnostica la masa con el **potencial ecológico**.

Se han considerado los indicadores, los valores de referencia y los límites de clase B+/M (Bueno o superior/Moderado), M/D (Moderado/Deficiente) y D/M (Deficiente/Malo), así como sus ratios de calidad ecológica (RCE), especificados en las tablas A21 y A22.

Tabla A21. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.

			RANGOS DEL RCE						
Indicador	Elementos	Parámetros	Bueno o	superior	Moderado	Deficiente	Malo		
		Clorofila <i>a</i> (μg/L)	≥ 0,433		0,432 – 0,287	0,286 – 0,143	< 0,143		
Biológico	Fitoplancton	Biovolumen algal (mm³/L)	≥ 0,362		0,361 – 0,24	0,23 - 0,12	< 0,12		
		Índice de Catalán (IGA)	≥ 0,	982	0,981 – 0,655	0,654 – 0,327	< 0,327		
		Porcentaje de cianobacterias	≥ 0,	715	0,714 - 0,48	0,47 – 0,24	< 0,24		
	Bueno o superior		Moderado	Deficiente	Malo				
INDICADOR BIOLÓGICO			> 0,6		0,4-0,6	0,2-0,4	< 0,2		
				RAI	NGOS DE VALO	RES			
Indicador	Elementos	Parámetros	Muy bueno	Bueno	Moderado	Deficiente	Malo		
	Transparencia	Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7		
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	>8	8-6	6-4	4-2	<2		
	Nutrientes	Concentración de PT (µg P/L)	0-4	4-10 10-35		35-100	>100		
				Bueno					
INDICADOR FISICOQUÍMICO			< 1,6	1,6 – 2,4		> 2,4			

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico normativo sigue el esquema de decisiones indicado en la tabla A22.

Tabla A22. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico (PE)
Bueno o superior	Muy bueno	Bueno o superior
Bueno o superior	Bueno	Bueno o superior
Bueno o superior	Moderado	Moderado
Moderado		Moderado
Deficiente	Indistinto	Deficiente
Malo		Malo

En la tabla A23a y b se incluye el potencial indicado por cada uno de los parámetros de los dos muestreos realizados, así como la catalogación de la masa de agua según el potencial ecológico, tras pasar el filtro del indicador fisicoquímico.

Tabla A23a. Diagnóstico del potencial ecológico del embalse de El Val en primavera.

Indicador	Elementos	Parámetro	Indicador	Valor	RCE	RCET	PE	
Biológico	Fitoplanctor	Biomasa	Clorofila a (µg/L)	5,35	0,49	0,64	Bueno o Superior	
	INDIC	ADOR BIOLÓG		2	BUENO O SUPERIOR			
Indica	Indicador Elementos Indicador Valor						PE	
		Transparencia	Disco de Secchi (m)	5,00		Bueno		
Fisicoquími	со	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	12,20		Muy Bueno		
		Nutrientes	Concentración de PT (µg P/L)	163,00		Moderado		
INDICADOR FISICOQUÍMICO					3 MODERAD			
POTENCIAL ECOLÓGICO					MODERADO			
ESTADO FINAL				INFERIOR A BUENO				

De acuerdo con los resultados obtenidos, el Estado Final del embalse de El Val para el muestreo de primavera del año 2001 es de nivel 3, **INFERIOR A BUENO**.

Tabla A23b. Diagnóstico del potencial ecológico del embalse de El Val en verano.

Indicador	Elementos	Parámetro	Indicador	Valor	RCE	RCET	PE
Biológico	Fitoplancto	Biomasa	Clorofila a (µg/L)	10,70	0,24	0,34	Moderado
	ADOR BIOLÓG	3			MODERADO		
Indica	ador	Elementos	Indicador	Valor		PE	
		Transparencia	Disco de Secchi (m)	6,10		Muy Bueno	
Fisicoquími	со	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	6,90		Bueno	
		Nutrientes	Concentración de PT (µg P/L)	121,00		Moderado	
INDICADOR FISICOQUÍMICO					3		MODERADO

POTENCIAL ECOLÓGICO	MODERADO
ESTADO FINAL	INFERIOR A BUENO

De acuerdo con los resultados obtenidos, el Estado Final del embalse de El Val para el muestreo de verano del año 2001 es de nivel 3, **INFERIOR A BUENO**.

En la tabla A23c se presenta los resultados del promedio anual de las dos medidas del indicador biológico y la mediana de los valores del indicador fisicoquímico.

Tabla A23c. Diagnóstico del potencial ecológico del embalse de El Val promedio y mediana anual.

Indicador	Elementos	Parámetro	Indicador	Valor	RCE	RCET	PE	
Biológico	Fitoplancton	Biomasa	Clorofila a (µg/L)	8,03	0,32	0,45	Moderado	
	BIOLÓGICO PI	3			MODERADO			
Indica	ador	Elementos	Indicador	Val	or med	PE		
		ransparencia	Disco de Secchi (m)	5,55		Bueno		
Fisicoquími	co C	xigenación	O ₂ hipolimnética (mg O ₂ /L)	9,55		Muy Bueno		
		lutrientes	Concentración de PT (µg P/L)		142,00		Moderado	
INDICADOR FISICOQUÍMICO MEDIANA					3 MODERAD			
POTENCIAL ECOLÓGICO					Λ	ODERA	DO	
ESTADO FINAL					INFE	RIOR A E	BUENO	

Por lo tanto, para el conjunto del año 2001, el Estado Final en cálculo anual del embalse de El Val es de nivel 3, **INFERIOR A BUENO**.